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Linear Classifiers

• A hyperplane partitions         into two half-spaces

– Defined by the normal vector

• is orthogonal to any vector lying 

on the hyperplane

– Assumed to pass through the origin

• This is because we incorporated bias term        into it by

• Consider classification with +1, -1 labels ... 
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Linear Classifiers

• Linear classifiers: represent decision boundary by hyperplane

– Note that: 
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• The perceptron uses the following update rule each 

time it receives a new training instance

– If the prediction matches the label, make no change

– Otherwise, adjust θ

h(x) = sign(✓|x) sign(z) =
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The Perceptron
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• The perceptron uses the following update rule each 

time it receives a new training instance

• Re-write as                                          (only upon misclassification)

– Can eliminate α in this case, since its only effect is to scale θ
by a constant, which doesn’t affect performance

The Perceptron
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Perceptron Rule:  If           is misclassified, do ✓  ✓ + y(i)x(i)✓  ✓ + y(i)x(i)
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Why the Perceptron Update Works

• Consider the misclassified example (y = +1)

– Perceptron wrongly thinks that 

• Update:

• Note that

• Therefore,                is less negative than

– So, we are making ourselves more correct on this example!
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The Perceptron Cost Function

• The perceptron uses the following cost function

– is 0 if the prediction is correct

– Otherwise, it is the confidence in the misprediction
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Online Perceptron Algorithm
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1.) Let ✓  [0, 0, . . . , 0]
2.) Repeat:
3.) Receive training example (x(i), y(i))
4.) if y(i)x(i)✓  0 // prediction is incorrect

5.) ✓  ✓ + y(i)x(i)

Online learning – the learning mode where the model update is 

performed each time a single observation is received

Batch learning – the learning mode where the model update is 

performed after observing the entire training set



Online Perceptron Algorithm
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Red points are 

labeled +

Blue points are 

labeled -



Batch Perceptron
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1.) Given training data
�
(x(i), y(i))

 n

i=1
2.) Let ✓  [0, 0, . . . , 0]
2.) Repeat:
2.) Let � [0, 0, . . . , 0]
3.) for i = 1 . . . n, do
4.) if y(i)x(i)✓  0 // prediction for ith instance is incorrect

5.) � �+ y(i)x(i)

6.) � �/n // compute average update

6.) ✓  ✓ + ↵�
8.) Until k�k2 < ✏

• Simplest case:  α = 1 and don’t normalize, yields the fixed 

increment perceptron

• Guaranteed to find a separating hyperplane if one exists
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