
Linear Regression: 
Vectorization, 
Regularization

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Byron Boots, with grateful acknowledgement to Eric Eaton and the many 
others who made their course materials freely available online. Feel free to reuse or adapt these slides for 
your own academic purposes, provided that you include proper attribution. 



Last Time: Basis Functions

• Basic linear model: 

• More general linear model:

• Once we have replaced the data by the outputs of 
the basis functions, fitting the generalized model is 
exactly the same problem as fitting the basic model
– Unless we use the kernel trick – more on that when we 

cover support vector machines

2

h✓(x) =
dX

j=0

✓j�j(x)

h✓(x) =
dX

j=0

✓jxj

Based on slide by Geoff Hinton



h(x) = ✓|x

x| =
⇥
1 x1 . . . xd

⇤

Vectorization
• Benefits of vectorization
– More compact equations
– Faster code (using optimized matrix libraries)

• Consider our model:

• Let

• Can write the model in vectorized form as
3

h(x) =
dX

j=0

✓jxj

✓ =

2

6664

✓0
✓1
...
✓d

3

7775



Vectorization
• Consider our model for n instances:

• Let

• Can write the model in vectorized form as
4

h✓(x) = X✓

X =

2

66666664

1 x(1)
1 . . . x(1)

d
...

...
. . .

...

1 x(i)
1 . . . x(i)

d
...

...
. . .

...

1 x(n)
1 . . . x(n)

d

3

77777775

✓ =

2

6664

✓0
✓1
...
✓d

3

7775

h
⇣
x(i)

⌘
=

dX

j=0

✓jx
(i)
j

R(d+1)⇥1 Rn⇥(d+1)



J(✓) =
1

2n

nX

i=1

⇣
✓|x(i) � y(i)

⌘2

Vectorization
• For the linear regression cost function:

5

J(✓) =
1

2n
(X✓ � y)| (X✓ � y)

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

Rn⇥(d+1)

R(d+1)⇥1

Rn⇥1R1⇥n

Let:

y =

2

6664

y(1)

y(2)

...
y(n)

3

7775



Closed Form Solution:

Closed Form Solution
• Instead of using GD, solve for optimal analytically
– Notice that the solution is when

• Derivation:

Take derivative and set equal to 0, then solve for     : 

6

✓
@

@✓
J(✓) = 0

J (✓) =
1

2n
(X✓ � y)| (X✓ � y)

/ ✓|X|X✓ � y|X✓ � ✓|X|y + y|y
/ ✓|X|X✓ � 2✓|X|y + y|y

1 x 1J (✓) =
1

2n
(X✓ � y)| (X✓ � y)

/ ✓|X|X✓ � y|X✓ � ✓|X|y + y|y
/ ✓|X|X✓ � 2✓|X|y + y|y

J (✓) =
1

2n
(X✓ � y)| (X✓ � y)

/ ✓|X|X✓ � y|X✓ � ✓|X|y + y|y
/ ✓|X|X✓ � 2✓|X|y + y|y

@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

✓
@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y



Closed Form Solution
• Can obtain      by simply plugging X and into

• If X T X is not invertible (i.e., singular), may need to:
– Use pseudo-inverse instead of the inverse

• In python,  numpy.linalg.pinv(a)

– Remove redundant (not linearly independent) features
– Remove extra features to ensure that d ≤ n

7

@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

y =

2

6664

y(1)

y(2)

...
y(n)

3

7775X =

2

66666664

1 x(1)
1 . . . x(1)

d
...

...
. . .

...

1 x(i)
1 . . . x(i)

d
...

...
. . .

...

1 x(n)
1 . . . x(n)

d

3

77777775

✓ y



Gradient Descent vs Closed Form

Gradient Descent           Closed Form Solution

8

• Requires multiple iterations
• Need to choose α
• Works well when n is large
• Can support incremental 

learning

• Non-iterative
• No need for α
• Slow if n is large

– Computing (X T X)-1 is 
roughly O(n3)



Improving Learning:  
Feature Scaling

• Idea: Ensure that feature have similar scales

• Makes gradient descent converge much faster

9

0

5

10

15

20

0 5 10 15 20
✓1

✓2

Before Feature Scaling

0

5

10

15

20

0 5 10 15 20
✓1

✓2

After Feature Scaling



Feature Standardization
• Rescales features to have zero mean and unit variance

– Let μj be the mean of feature j:

– Replace each value with:

• sj is the standard deviation of feature j
• Could also use the range of feature j (maxj – minj) for sj

• Must apply the same transformation to instances for 
both training and prediction

• Outliers can cause problems
10

µj =
1

n

nX

i=1

x(i)
j

x(i)
j  

x(i)
j � µj

sj

for j = 1...d
(not x0!)



Quality of Fit

Overfitting:
• The learned hypothesis may fit the training set very 

well (                   )
• ...but fails to generalize to new examples

11

Pr
ic

e

Size

Pr
ic

e

Size

Pr
ic

e

Size

Underfitting
(high bias)

Overfitting
(high variance)

Correct fit

J(✓) ⇡ 0

Based on example by Andrew Ng



Regularization
• A method for automatically controlling the 

complexity of the learned hypothesis

• Idea:  penalize for large values of
– Can incorporate into the cost function
– Works well when we have a lot of features, each that 

contributes a bit to predicting the label 

• Can also address overfitting by eliminating features 
(either manually or via model selection)

12

✓j



Regularization
• Linear regression objective function

– is the regularization parameter (           )
– No regularization on      ! 

13

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
+ �

dX

j=1

✓2j

model fit to data regularization

✓0

� � � 0

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j



Understanding Regularization

• Note that                                 

– This is the magnitude of the feature coefficient vector!

• We can also think of this as:

• L2 regularization pulls coefficients toward 0

14

dX

j=1

✓2j = k✓1:dk22

dX

j=1

(✓j � 0)2 = k✓1:d � ~0k22

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j



Understanding Regularization

• What happens if we set      to be huge (e.g., 1010)?

15

�
Pr

ic
e

Size0 0 0 0

Based on example by Andrew Ng

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j



Regularized Linear Regression

16

• Cost Function

• Fit by solving

• Gradient update: 

min
✓

J(✓)

✓j  ✓j � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j

✓0  ✓0 � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

regularization

@

@✓j
J(✓)

@

@✓0
J(✓)

✓j  ✓j � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j � �✓j

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j



Regularized Linear Regression

17

✓0  ✓0 � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

• We can rewrite the gradient step as:

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j

✓j  ✓j � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j � �✓j

✓j  ✓j (1� ↵�)� ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j



Regularized Linear Regression

18

✓ =

0

BBBBB@
X|X + �

2

666664

0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

3

777775

1

CCCCCA

�1

X|y

• To incorporate regularization into the closed form 
solution:



Regularized Linear Regression

19

• To incorporate regularization into the closed form 
solution:

• Can derive this the same way, by solving

• Can prove that for λ > 0, inverse exists in the 
equation above

✓ =

0

BBBBB@
X|X + �

2

666664

0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

3

777775

1

CCCCCA

�1

X|y

@

@✓
J(✓) = 0


