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Last Time: Basis Functions

• Basic linear model: 

• More general linear model:

• Once we have replaced the data by the outputs of 
the basis functions, fitting the generalized model is 
exactly the same problem as fitting the basic model
– Unless we use the kernel trick – more on that when we 

cover support vector machines
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Vectorization
• Benefits of vectorization
– More compact equations
– Faster code (using optimized matrix libraries)

• Consider our model:

• Let

• Can write the model in vectorized form as
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Vectorization
• Consider our model for n instances:

• Let

• Can write the model in vectorized form as
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Vectorization
• For the linear regression cost function:
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Closed Form Solution:

Closed Form Solution
• Instead of using GD, solve for optimal analytically
– Notice that the solution is when

• Derivation:

Take derivative and set equal to 0, then solve for     : 
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Closed Form Solution
• Can obtain      by simply plugging X and into

• If X T X is not invertible (i.e., singular), may need to:
– Use pseudo-inverse instead of the inverse

• In python,  numpy.linalg.pinv(a)

– Remove redundant (not linearly independent) features
– Remove extra features to ensure that d ≤ n
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Gradient Descent vs Closed Form

Gradient Descent           Closed Form Solution
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• Requires multiple iterations
• Need to choose α
• Works well when n is large
• Can support incremental 

learning

• Non-iterative
• No need for α
• Slow if n is large

– Computing (X T X)-1 is 
roughly O(n3)



Improving Learning:  
Feature Scaling

• Idea: Ensure that feature have similar scales

• Makes gradient descent converge much faster
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Feature Standardization
• Rescales features to have zero mean and unit variance

– Let μj be the mean of feature j:

– Replace each value with:

• sj is the standard deviation of feature j
• Could also use the range of feature j (maxj – minj) for sj

• Must apply the same transformation to instances for 
both training and prediction

• Outliers can cause problems
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Quality of Fit

Overfitting:
• The learned hypothesis may fit the training set very 

well (                   )
• ...but fails to generalize to new examples
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Regularization
• A method for automatically controlling the 

complexity of the learned hypothesis

• Idea:  penalize for large values of
– Can incorporate into the cost function
– Works well when we have a lot of features, each that 

contributes a bit to predicting the label 

• Can also address overfitting by eliminating features 
(either manually or via model selection)
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Regularization
• Linear regression objective function

– is the regularization parameter (           )
– No regularization on      ! 
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Understanding Regularization

• Note that                                 

– This is the magnitude of the feature coefficient vector!

• We can also think of this as:

• L2 regularization pulls coefficients toward 0
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Understanding Regularization

• What happens if we set      to be huge (e.g., 1010)?
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Regularized Linear Regression
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• Cost Function

• Fit by solving

• Gradient update: 
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Regularized Linear Regression

17

✓0  ✓0 � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

• We can rewrite the gradient step as:

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j

✓j  ✓j � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j � �✓j

✓j  ✓j (1� ↵�)� ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j



Regularized Linear Regression
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• To incorporate regularization into the closed form 
solution:



Regularized Linear Regression
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• To incorporate regularization into the closed form 
solution:

• Can derive this the same way, by solving

• Can prove that for λ > 0, inverse exists in the 
equation above
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