

Last Time: Linear Regression

- Hypothesis:

$$
y=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{d} x_{d}=\sum_{j=0}^{d} \theta_{j} x_{j}
$$

- Fit model by minimizing sum of squared errors

Last Time: Gradient Descent

- Initialize θ
- Repeat until convergence

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})
$$

simultaneous update for $\mathrm{j}=0 . . \mathrm{d}$

Regression

Given:

- Data $\boldsymbol{X}=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}\right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$
- Corresponding labels $\boldsymbol{y}=\left\{y^{(1)}, \ldots, y^{(n)}\right\}$ where $y^{(i)} \in \mathbb{R}$

Extending Linear Regression to More Complex Models

- The inputs \mathbf{X} for linear regression can be:
- Original quantitative inputs
- Transformation of quantitative inputs
- e.g. log, exp, square root, square, etc.
- Polynomial transformation
- example: $y=\beta_{0}+\beta_{1} \cdot x+\beta_{2} \cdot x^{2}+\beta_{3} \cdot x^{3}$
- Basis expansions
- Dummy coding of categorical inputs
- Interactions between variables
- example: $x_{3}=x_{1} \cdot x_{2}$

This allows use of linear regression techniques to fit non-linear datasets.

Linear Basis Function Models

- Generally,

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sum_{j=0}^{d} \theta_{\text {basis function }}^{\theta_{j}} \underbrace{\phi_{j}(\boldsymbol{x})}_{j}
$$

- Typically, $\phi_{0}(\boldsymbol{x})=1$ so that θ_{0} acts as a bias
- In the simplest case, we use linear basis functions :

$$
\phi_{j}(\boldsymbol{x})=x_{j}
$$

Linear Basis Function Models

- Polynomial basis functions:

$$
\phi_{j}(x)=x^{j}
$$

- These are global; a small change in x affects all basis functions

- Gaussian basis functions:

$$
\phi_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}
$$

- These are local; a small change in x only affect nearby basis functions. μ_{j} and s control location and scale (width).

Linear Basis Function Models

- Sigmoidal basis functions:

$$
\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)
$$

where

$$
\sigma(a)=\frac{1}{1+\exp (-a)}
$$

- These are also local; a small
 change in x only affects nearby basis functions. μ_{j} and s control location and scale (slope).

Example of Fitting a Polynomial Curve with a Linear Model

Linear Basis Function Models

- Basic linear model:

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sum_{j=0}^{d} \theta_{j} x_{j}
$$

- More general linear model: $\quad h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sum_{j=0}^{d} \theta_{j} \phi_{j}(\boldsymbol{x})$
- Once we have replaced the data by the outputs of the basis functions, fitting the generalized model is exactly the same problem as fitting the basic model
- Unless we use the kernel trick - more on that when we cover support vector machines

