
Neural Networks
(Continued), Continued

6Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton’s slides and grateful
acknowledgement to the many others who made their course materials freely available online. Feel free to reuse
or adapt these slides for your own academic purposes, provided that you include proper attribution.

Forward Propagation
• Given one labeled training instance (x, y):

Forward Propagation

• a(1) = x
• z(2) = Θ(1)a(1)

• a(2) = g(z(2)) [add a0
(2)]

• z(3) = Θ(2)a(2)

• a(3) = g(z(3)) [add a0
(3)]

• z(4) = Θ(3)a(3)

• a(4) = hΘ(x) = g(z(4))

7

a(1)

a(2) a(3) a(4)

Based on slide by Andrew Ng

Backpropagation: Gradient Computation
Let δj(l) = “error” of node j in layer l

Backpropagation
• δ(4) = a(4) – y
• δ(3) = (Θ(3))Tδ(4) .*g’(z(3))
• δ(2) = (Θ(2))Tδ(3) .*g’(z(2))
• (No δ(1))

8

g’(z(3)) = a(3) .* (1–a(3))

g’(z(2)) = a(2) .* (1–a(2))

@

@⇥(l)
ij

J(⇥) = a(l)j �(l+1)
i (ignoring λ; if λ = 0)

δ(4)
δ(3)δ(2)

Element-wise
product .*

Based on slide by Andrew Ng

Backpropagation

9

Note: Can vectorize as
�(l)

ij = �(l)
ij + a(l)j �(l+1)

i

�(l) = �(l) + �(l+1)a(l)
|

�(l)
ij = �(l)

ij + a(l)j �(l+1)
i

�(l) = �(l) + �(l+1)a(l)
|

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reachedD(l) is the matrix of partial derivatives of J(Θ)

Based on slide by Andrew Ng

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

(Used to accumulate gradient)

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Training a Neural Network via Gradient
Descent with Backprop

10

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

(Used to accumulate gradient)

Based on slide by Andrew Ng

Backpropagation

Backprop Issues
�Backprop is the cockroach of machine learning. It’s
ugly, and annoying, but you just can’t get rid of it.�

-Geoff Hinton

Problems:

• black box

• local minima

11

Putting It All Together

12

Training a Neural Network
Pick a network architecture (connectivity pattern between nodes)

• # input units = # of features in dataset

• # output units = # classes

Reasonable default: 1 hidden layer

• or if >1 hidden layer, have same # hidden units in
every layer (usually the more the better)

13Based on slide by Andrew Ng

Training a Neural Network
1. Randomly initialize weights

2. Implement forward propagation to get hΘ(xi)
for any instance xi

3. Implement code to compute cost function J(Θ)

4. Implement backprop to compute partial derivatives

5. Optional: Use gradient checking to compare

6. Use gradient descent with backprop to fit the network

14Based on slide by Andrew Ng

