Neural Networks
. (Continued), Continued

- —

-

T

P

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton’s slides and grateful
acknowledgement to the many others who made their course materials freely available online. Feel free to reuse
or adapt these slides for your own academic purposes, provided that you include proper attribution.

Forward Propagation

* Given one labeled training instance (x, y):

Forward Propagation

. gll) =

. (2= @la(1)

2= g(z?) [add a,?)]

. 203)=)52

=g(z®) [add ay?]

. 2(4) = 9B)3B3)

Based on slide by Andrew Ng

= ho(x) = g(2)

SN
OO,
' \

QO t NEXEL, H

1»¢§§¢1?%~
\‘4‘%

Backpropagation: Gradient Computation

Let 6) = “error” of node j in Iayerl

H

\Vlr ‘v" "r ‘ ’: |

A’ ‘
“ x‘:
Element-wise \\‘-’

0
product .* /A\

Backpropagation % o2 53
° 6(4) = a(4) - y g /(2(3)) = a(3) ot (1_a(3))

e OB = (@(3))1-5(4) o g 7(2(3)
e 02 = (@(2))1-5(3) o g 4 (z(z))
* (No o)

g ’(z(z)) = g(2) * (1_3(2))

0
a@(l) (©) = aﬁ'l)éz{l—'—l) (ignoring A; if A = 0)
1]

Based on slide by Andrew Ng

Backpropagation

Set A;lj) =0 Vi,j (Used to accumulate gradient)
For each training instance (x;,y;):

Set all) = x;

Compute {a®, ... all)} via forward propagation

Compute §&) = all) —y,

Compute errors {6(Z—1 ... §3)})

Compute gradients AE? = AE? + a§l)5(l+1)

AY 120 if j#0

Compute ave regularized gradient D(l.) =
P 58 5 *J { A(otherwise

3|*—‘3|*—‘

D! is the matrix of partial derivatives of J(O)
Note: Can vectorize AZ(.;.) — Ag.) 4 a§l)5§l+1) as AD — AD 4 1) ,O7

Based on slide by Andrew Ng

Training a Neural Network via Gradient
Descent with Backprop

Given: training set {(x1,%1),- -, (Xn,¥Yn)}
Initialize all @) randomly (NOT to 0!)
Loop // each iteration is called an epoch

Set Az(-;) =0 Vi1,9 (Used to accumulate gradient)
For each training instance (x;,y;):

Set all) = x;

Compute {a®, ... all)} via forward propagation

Compute 6 = all) —q,

Compute errors {§(L—D ... §32))

Compute gradients Ag) = A,g-) + a§l>5§l+1)
LAD 1200 ifj#0

I .
4 A(. : otherwise
n 1]

Compute avg regularized gradient Dg.) = {
Update weights via gradient step @7(;;) = @7(;;-) — ozDg-)
Until weights converge or max #epochs is reached

Based on slide by Andrew Ng

uoljesedoudyoeg

Backprop Issues

“Backprop is the cockroach of machine learning. It’s
ugly, and annoying, but you just can’t get rid of it.”
—Geoff Hinton

Problems:
* black box

* |ocal minima

Putting It All Together

Training a Neural Network

Pick a network architecture (connectivity pattern between nodes)

() N7 (L N\ (J

O<ZANEARIAT

RSN NI SRS

LS ORINERINSKEL
< A

X O R ST

AT
NS
O

DN
S
fg%.éf%iézé,};,g;‘%.
N <N\

* #input units = # of features in dataset

* # output units = # classes

Reasonable default: 1 hidden layer

e orif >1 hidden layer, have same # hidden units in
every layer (usually the more the better)

Based on slide by Andrew Ng

Training a Neural Network

1. Randomly initialize weights

2. Implement forward propagation to get hg(x))
for any instance x;

3. Implement code to compute cost function J(O)

4. Implement backprop to compute partial derivatives

8(l) J(@)
90
5. Optional: Use gradient checking to compare ﬁJ(@)

6. Use gradient descent with backprop to fit the network

Based on slide by Andrew Ng

