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Forward Propagation
• Given one labeled training instance (x, y):

Forward Propagation

• a(1) = x
• z(2) = Θ(1)a(1)

• a(2) = g(z(2))     [add a0
(2)]

• z(3) = Θ(2)a(2)

• a(3) = g(z(3))     [add a0
(3)]

• z(4) = Θ(3)a(3)

• a(4) = hΘ(x) = g(z(4))
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Backpropagation: Gradient Computation
Let δj(l) = “error” of node j in layer l

Backpropagation
• δ(4) = a(4) – y
• δ(3) = (Θ(3))Tδ(4) .*g’(z(3)) 
• δ(2) = (Θ(2))Tδ(3) .*g’(z(2))
• (No δ(1))
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g’(z(3)) = a(3) .* (1–a(3))

g’(z(2)) = a(2) .* (1–a(2))

@

@⇥(l)
ij

J(⇥) = a(l)j �(l+1)
i (ignoring λ; if λ = 0)

δ(4)
δ(3)δ(2)

Element-wise 
product .*
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Backpropagation
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Note:  Can vectorize as
�(l)

ij = �(l)
ij + a(l)j �(l+1)

i

�(l) = �(l) + �(l+1)a(l)
|

�(l)
ij = �(l)

ij + a(l)j �(l+1)
i

�(l) = �(l) + �(l+1)a(l)
|

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reachedD(l) is the matrix of partial derivatives of J(Θ)
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Training a Neural Network via Gradient 
Descent with Backprop
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Backpropagation



Backprop Issues
�Backprop is the cockroach of machine learning.  It’s 
ugly, and annoying, but you just can’t get rid of it.�

-Geoff Hinton

Problems: 

• black box

• local minima
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Putting It All Together
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Training a Neural Network
Pick a network architecture (connectivity pattern between nodes)

• # input units = # of features in dataset

• # output units = # classes

Reasonable default: 1 hidden layer

• or if >1 hidden layer, have same # hidden units in 
every layer (usually the more the better)
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Training a Neural Network
1. Randomly initialize weights

2. Implement forward propagation to get hΘ(xi)
for any instance xi

3. Implement code to compute cost function J(Θ)

4. Implement backprop to compute partial derivatives

5. Optional: Use gradient checking to compare                   

6. Use gradient descent with backprop to fit the network

14Based on slide by Andrew Ng


