
Neural Networks

1Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton’s slides and grateful
acknowledgement to the many others who made their course materials freely available online. Feel free to reuse
or adapt these slides for your own academic purposes, provided that you include proper attribution.

Neural Networks
• Origins: Algorithms inspired by the brain.
• Very widely used in 80s and early 90s; popularity

diminished in late 90s.
• Recent resurgence: State-of-the-art technique for

many applications
• Artificial neural networks are not nearly as complex

or intricate as the actual brain structure

2Based on slide by Andrew Ng

Neural networks

• Neural networks are made up of nodes or units,
connected by links

• Each link has an associated weight and activation level
• Each node has an input function (typically summing over

weighted inputs), an activation function, and an output

Output units

Hidden units

Input units
Layered feed-forward network

3Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Neuron Model: Logistic Unit

4

Sigmoid (logistic) activation function: g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias unit”

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based on slide by Andrew Ng

X

h✓(x) =
1

1 + e�✓Tx

Neural Network

5

Layer 3
(Output Layer)

Layer 1
(Input Layer)

Layer 2
(Hidden Layer)

x0 = 1bias units a(2)0

Slide by Andrew Ng

Feed-Forward Process
• Input layer units are set by some exterior function

(think of these as sensors), which causes their output
links to be activated at the specified level

• Working forward through the network, the input
function of each unit is applied to compute the input
value
– Usually this is just the weighted sum of the activation on

the links feeding into this node

• The activation function transforms this input
function into a final value
– Typically this is a nonlinear function, often a sigmoid

function corresponding to the “threshold” of that node

6Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Neural Network

7

ai
(j) = “activation” of unit i in layer j

Θ(j) = weight matrix controlling function
mapping from layer j to layer j + 1

Slide by Andrew Ng

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)

Feed-Forward Steps:

Vectorization

8

a(2)1 = g
⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z(2)1

⌘

a(2)2 = g
⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z(2)2

⌘

a(2)3 = g
⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z(2)3

⌘

h⇥(x) = g
⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z(3)1

⌘

a(2)1 = g
⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z(2)1

⌘

a(2)2 = g
⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z(2)2

⌘

a(2)3 = g
⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z(2)3

⌘

h⇥(x) = g
⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z(3)1

⌘

a(2)1 = g
⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z(2)1

⌘

a(2)2 = g
⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z(2)2

⌘

a(2)3 = g
⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z(2)3

⌘

h⇥(x) = g
⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z(3)1

⌘

a(2)1 = g
⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z(2)1

⌘

a(2)2 = g
⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z(2)2

⌘

a(2)3 = g
⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z(2)3

⌘

h⇥(x) = g
⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z(3)1

⌘

Based on slide by Andrew Ng

z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))

z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))

z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))⇥(1) ⇥(2)

h✓(x) =
1

1 + e�✓Tx

Other Network Architectures

L denotes the number of layers

contains the numbers of nodes at each layer
– Not counting bias units
– Typically, s0 = d (# input features) and sL-1=K (# classes)

9

Layer 3Layer 1 Layer 2 Layer 4

h✓(x) =
1

1 + e�✓Tx

s 2 N+L

s = [3, 3, 2, 1]

Multiple Output Units: One-vs-Rest

10

Pedestrian Car Motorcycle Truck

h⇥(x) 2 RK

when pedestrian when car when motorcycle when truck

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We want:

Slide by Andrew Ng

Neural Network Classification

12

Binary classification
y = 0 or 1

1 output unit (sL-1= 1)

Multi-class classification (K classes)

K output units (sL-1= K)

y 2 RK

pedestrian car motorcycle truck

e.g. , , ,

Given:
{(x1,y1), (x2,y2), ..., (xn,yn)}

contains # nodes at each layer
– s0 = d (# features)

s 2 N+L

Slide by Andrew Ng

Understanding Representations

13

Representing Boolean Functions

14

Simple example: AND

x1 x2 hΘ(x)
0 0
0 1
1 0
1 1

g(z) =
1

1 + e�z

Logistic / Sigmoid Function

hΘ(x) = g(-30 + 20x1 + 20x2)

-30

+20

+20
h✓(x) =

1

1 + e�✓Tx

Based on slide and example by Andrew Ng

x1 x2 hΘ(x)
0 0 g(-30) ≈ 0
0 1 g(-10) ≈ 0
1 0 g(-10) ≈ 0
1 1 g(10) ≈ 1

Representing Boolean Functions

15

-10

+20
+20

h✓(x) =
1

1 + e�✓Tx

OR
-30

+20
+20

h✓(x) =
1

1 + e�✓Tx

AND

h✓(x) =
1

1 + e�✓Tx

NOT

h✓(x) =
1

1 + e�✓Tx

NOR: (NOT x1) AND (NOT x2)

+10

-20
-20

+10

-20

Representing Boolean Functions

16

h✓(x) =
1

1 + e�✓Tx

XOR: (x1 AND (NOT x2)) OR ((NOT x1) AND x2)

Combining Representations to Create
Non-Linear Functions

17

-10
+20
+20

h✓(x) =
1

1 + e�✓Tx

OR
-30

+20
+20

h✓(x) =
1

1 + e�✓Tx

AND
+10

-20
-20

h✓(x) =
1

1 + e�✓Tx

NOR

III

III IV

-10

+20

+20
h✓(x) =

1

1 + e�✓Tx

-30
+20

+20 in I

+10
-20

-20

in III I or III

Based on example by Andrew Ng

Layering Representations

Each image is “unrolled” into a vector x of pixel intensities

18

20 × 20 pixel images
d = 400 10 classes

x1 ... x20
x21 ... x40
x41 ... x60

x381 ... x400

...

Layering Representations

19

x1

x2

x3

x4

x5

xd

“0”

“1”

“9”

Input Layer

Output Layer
Hidden Layer

Visualization of
Hidden Layer

