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Neural Networks
• Origins: Algorithms inspired by the brain.
• Very widely used in 80s and early 90s; popularity 

diminished in late 90s.
• Recent resurgence: State-of-the-art technique for 

many applications
• Artificial neural networks are not nearly as complex 

or intricate as the actual brain structure
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Neural networks

• Neural networks are made up of nodes or units, 
connected by links

• Each link has an associated weight and activation level
• Each node has an input function (typically summing over 

weighted inputs), an activation function, and an output

Output units

Hidden units

Input units
Layered feed-forward network
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Neuron Model: Logistic Unit
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Neural Network

5

Layer 3
(Output Layer)

Layer 1
(Input Layer)

Layer 2
(Hidden Layer)

x0 = 1bias units a(2)0
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Feed-Forward Process
• Input layer units are set by some exterior function 

(think of these as sensors), which causes their output 
links to be activated at the specified level

• Working forward through the network, the input 
function of each unit is applied to compute the input 
value
– Usually this is just the weighted sum of the activation on 

the links feeding into this node

• The activation function transforms this input 
function into a final value
– Typically this is a nonlinear function, often a sigmoid

function corresponding to the “threshold” of that node
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Neural Network
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ai
(j) = “activation” of unit i in layer j

Θ(j) = weight matrix controlling function 
mapping from layer j to layer j + 1
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Feed-Forward Steps:

Vectorization
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z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1
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Other Network Architectures

L denotes the number of layers

contains the numbers of nodes at each layer
– Not counting bias units
– Typically, s0 = d (# input features) and sL-1=K (# classes) 
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h✓(x) =
1

1 + e�✓Tx

s 2 N+L

s = [3, 3, 2, 1]



Multiple Output Units:  One-vs-Rest
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Pedestrian Car Motorcycle Truck
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Neural Network Classification
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Binary classification
y = 0 or 1

1 output unit (sL-1= 1)

Multi-class classification (K classes)

K output units (sL-1= K)

y 2 RK

pedestrian   car     motorcycle   truck

e.g.           ,             ,                 ,

Given:
{(x1,y1), (x2,y2), ..., (xn,yn)}

contains # nodes at each layer
– s0 = d (# features) 

s 2 N+L
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Understanding Representations
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Representing Boolean Functions
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Simple example: AND

x1 x2 hΘ(x)
0 0
0 1
1 0
1 1
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Logistic / Sigmoid Function
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x1 x2 hΘ(x)
0 0 g(-30) ≈ 0
0 1 g(-10) ≈ 0
1 0 g(-10) ≈ 0
1 1 g(10) ≈ 1



Representing Boolean Functions
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Representing Boolean Functions
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XOR: (x1 AND (NOT x2)) OR ((NOT x1) AND x2) 



Combining Representations to Create 
Non-Linear Functions
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Layering Representations

Each image is “unrolled” into a vector x of pixel intensities
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20 × 20 pixel images
d = 400     10 classes

x1 ... x20
x21 ... x40
x41 ... x60

x381 ... x400

...



Layering Representations
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x1

x2

x3

x4

x5

xd

“0”

“1”

“9”

Input Layer

Output Layer
Hidden Layer

Visualization of 
Hidden Layer


