

Neural Networks

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton's slides and grateful acknowledgement to the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Neural Networks

- Origins: Algorithms inspired by the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Neural networks

- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Neuron Model: Logistic Unit

"bias unit"

$$
\mathbf{x}=\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \boldsymbol{\theta}=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right]
$$

$$
\xrightarrow[\rightarrow]{\theta_{3}} \rightarrow h_{\boldsymbol{\theta}}(\mathbf{x})=g\left(\boldsymbol{\theta}^{\boldsymbol{\top}} \mathbf{x}\right)
$$

Sigmoid (logistic) activation function: $\quad g(z)=\frac{1}{1+e^{-z}}$

Neural Network

Layer 1
(Input Layer)

Layer 2
(Hidden Layer)

Layer 3
(Output Layer)

Feed-Forward Process

- Input layer units are set by some exterior function (think of these as sensors), which causes their output links to be activated at the specified level
- Working forward through the network, the input function of each unit is applied to compute the input value
- Usually this is just the weighted sum of the activation on the links feeding into this node
- The activation function transforms this input function into a final value
- Typically this is a nonlinear function, often a sigmoid function corresponding to the "threshold" of that node

Neural Network

$a_{i}^{(j)}=$ "activation" of unit i in layer j
$\Theta^{(i)}=$ weight matrix controlling function mapping from layer j to layer $j+1$

$$
\begin{aligned}
a_{1}^{(2)} & =g\left(\Theta_{10}^{(1)} x_{0}+\Theta_{11}^{(1)} x_{1}+\Theta_{12}^{(1)} x_{2}+\Theta_{13}^{(1)} x_{3}\right) \\
a_{2}^{(2)} & =g\left(\Theta_{20}^{(1)} x_{0}+\Theta_{21}^{(1)} x_{1}+\Theta_{22}^{(1)} x_{2}+\Theta_{23}^{(1)} x_{3}\right) \\
a_{3}^{(2)} & =g\left(\Theta_{30}^{(1)} x_{0}+\Theta_{31}^{(1)} x_{1}+\Theta_{32}^{(1)} x_{2}+\Theta_{33}^{(1)} x_{3}\right) \\
h_{\Theta}(x) & =a_{1}^{(3)}=g\left(\Theta_{10}^{(2)} a_{0}^{(2)}+\Theta_{11}^{(2)} a_{1}^{(2)}+\Theta_{12}^{(2)} a_{2}^{(2)}+\Theta_{13}^{(2)} a_{3}^{(2)}\right)
\end{aligned}
$$

Vectorization

$$
\begin{aligned}
a_{1}^{(2)} & =g\left(\Theta_{10}^{(1)} x_{0}+\Theta_{11}^{(1)} x_{1}+\Theta_{12}^{(1)} x_{2}+\Theta_{13}^{(1)} x_{3}\right)=g\left(z_{1}^{(2)}\right) \\
a_{2}^{(2)} & =g\left(\Theta_{20}^{(1)} x_{0}+\Theta_{21}^{(1)} x_{1}+\Theta_{22}^{(1)} x_{2}+\Theta_{23}^{(1)} x_{3}\right)=g\left(z_{2}^{(2)}\right) \\
a_{3}^{(2)} & =g\left(\Theta_{30}^{(1)} x_{0}+\Theta_{31}^{(1)} x_{1}+\Theta_{32}^{(1)} x_{2}+\Theta_{33}^{(1)} x_{3}\right)=g\left(z_{3}^{(2)}\right) \\
h_{\Theta}(\mathbf{x}) & =g\left(\Theta_{10}^{(2)} a_{0}^{(2)}+\Theta_{11}^{(2)} a_{1}^{(2)}+\Theta_{12}^{(2)} a_{2}^{(2)}+\Theta_{13}^{(2)} a_{3}^{(2)}\right)=g\left(z_{1}^{(3)}\right)
\end{aligned}
$$

Feed-Forward Steps:

$$
\begin{aligned}
& \mathbf{z}^{(2)}=\Theta^{(1)} \mathbf{x} \\
& \mathbf{a}^{(2)}=g\left(\mathbf{z}^{(2)}\right)
\end{aligned}
$$

Add $a_{0}^{(2)}=1$

$$
\begin{aligned}
\mathbf{z}^{(3)} & =\Theta^{(2)} \mathbf{a}^{(2)} \\
h_{\Theta}(\mathbf{x}) & =\mathbf{a}^{(3)}=g\left(\mathbf{z}^{(3)}\right)
\end{aligned}
$$

Other Network Architectures

L denotes the number of layers
$\mathbf{s} \in \mathbb{N}^{+}{ }^{L}$ contains the numbers of nodes at each layer

- Not counting bias units
- Typically, $s_{0}=d$ (\# input features) and $s_{L-1}=K$ (\# classes)

Multiple Output Units: One-vs-Rest

Pedestrian

Car

Motorcycle

Truck

$$
h_{\Theta}(\mathbf{x}) \in \mathbb{R}^{K}
$$

We want:

$$
\begin{array}{ccc}
h_{\Theta}(\mathbf{x}) \approx\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] & h_{\Theta}(\mathbf{x}) \approx\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] & h_{\Theta}(\mathbf{x}) \approx\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
\end{array} \quad h_{\Theta}(\mathbf{x}) \approx\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Neural Network Classification

Binary classification $y=0$ or 1

1 output unit ($s_{L-1}=1$)

Given:

$\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$
$\mathbf{s} \in \mathbb{N}^{+}$contains \# nodes at each layer
$-s_{0}=d$ (\# features)

Multi-class classification (K classes)

K output units ($s_{L-1}=K$)

Understanding Representations

Representing Boolean Functions

Simple example: AND

$$
\begin{aligned}
& x_{1}, x_{2} \in\{0,1\} \\
& y=x_{1} \text { AND } x_{2}
\end{aligned}
$$

$$
\mathrm{h}_{\Theta}(\mathbf{x})=g\left(-30+20 x_{1}+20 x_{2}\right)
$$

Logistic / Sigmoid Function

x_{1}	x_{2}	$\mathrm{~h}_{\ominus}(\mathbf{x})$
0	0	$g(-30) \approx 0$
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(10) \approx 1$

Representing Boolean Functions

NOT

NOR: (NOT x_{1}) AND (NOT x_{2})

Representing Boolean Functions

XOR: (x_{1} AND (NOT $\left.\left.x_{2}\right)\right)$ OR ((NOT $\left.x_{1}\right)$ AND $\left.x_{2}\right)$

Combining Representations to Create Non-Linear Functions

Layering Representations

7	9	6	5	8	7	4	4	1
0	7	3	3	2	4	8	4	5
6	6	3	2	9	2	3	3	7
6								
1	3	7	1	5	6	5	2	4
7	0	9	2	7	5	8	9	5
4	6	6	5	0	2	1	3	6
8	5	1	8	9	3	8	7	3
1	6	2	8	2	5	0	5	1
6	7	8	2	5	3	9	7	0
7	9	3	9	8	5	7	2	9

$$
\begin{aligned}
& x_{1} \ldots x_{20} \\
& x_{21} \ldots x_{40} \\
& x_{41} \ldots x_{60}
\end{aligned}
$$

$X_{381} \ldots X_{400}$
20×20 pixel images
$d=400 \quad 10$ classes
Each image is "unrolled" into a vector \mathbf{x} of pixel intensities

Layering Representations

7	9	6	5	8	7	4	4	1	8
0	7	3	3	2	4	8	4	5	7
4	6	3	2	9	2	3	3	7	6
1	3	7	1	5	6	5	2	4	4
7	0	9	2	7	5	8	9	5	4
4	6	6	5	0	2	7	3	6	9
8	5	1	8	9	3	8	7	3	6
1	6	2	8	2	5	0	5	1	5
6	7	8	2	5	3	9	7	0	0
7	9	3	9	8	5	7	2	9	8

+	Mr	+4	+	15
	Hin	Ter	4	-7
4	4 y	74	14	$4{ }^{4}$
FIT		1	$\underline{+}$	12
	-17	F		+11

