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Last Time
• Common decomposition of machine learning, based on 

differences in inputs and outputs
– Supervised Learning: Learn a function mapping inputs to outputs 

using labeled training data (you get instances/examples with both 
inputs and ground truth output)

– Unsupervised Learning: Summarize something about input data 
without any labels, for example clustering instances that are “similar”

– Reinforcement Learning: Learn how to make decisions given a sparse 
reward

• ML is an interaction between:
– data (features/attributes of data are important!)
– the the function class (parameterized model) you choose, and 
– the optimization algorithm you use to explore space of functions to 

find the “best” one



Supervised Learning: Function Approximation

Problem Setting
• Set of instances 
• Set of labels 
• Unknown target function 
• Set of function hypotheses

Input:  Training examples of unknown target function f

Output:  Hypothesis                that best approximates f

f : X ! Y
H = {h | h : X ! Y}

h 2 H

Based on slide by Tom Mitchell

{hxi, yii}ni=1 = {hx1, y1i , . . . , hxn, yni}

X
Y



Problem Setting
• Set of instances (inputs, independent variables…) 

• Set of labels (outputs, targets, dependent variables…) 

• Unknown target function 
• Set of function hypotheses

Input:  Training examples of unknown target function f

Output:  Hypothesis                that best approximates f

X
Y

f : X ! Y
H = {h | h : X ! Y}

h 2 H

Based on slide by Tom Mitchell

{hxi, yii}ni=1 = {hx1, y1i , . . . , hxn, yni}

Supervised Learning: Function Approximation



Problem Setting
• Set of instances 
• Set of labels 
• Unknown target function 
• Set of function hypotheses

• Performance metric
Input:  Training examples of unknown target function f

Output:  Hypothesis                that “best” approximates f 
according to the performance metric

X
Y

f : X ! Y
H = {h | h : X ! Y}

h 2 H

Based on slide by Tom Mitchell

{hxi, yii}ni=1 = {hx1, y1i , . . . , hxn, yni}

Supervised Learning: Function Approximation



Sample Dataset (was Tennis Played?)

• Columns denote features Xi

• Rows denote labeled instances 
• Class label denotes whether a tennis game was played

hxi, yii

hxi, yii



Decision Tree
• A possible decision tree for the data:

• Each internal node: test one attribute Xi

• Each branch from a node: selects one value for Xi

• Each leaf node: predict Y

Based on slide by Tom Mitchell



Decision Tree
• A possible decision tree for the data:

• What prediction would we make for
<outlook=sunny, temperature=hot, humidity=high, wind=weak> ?

Based on slide by Tom Mitchell



Decision Tree
• If features are continuous, internal nodes can 

test the value of a feature against a threshold

9



Decision Tree – Decision Boundary
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Decision
boundary

• Decision trees divide the feature space into axis-parallel 
(hyper-)rectangles

• Each rectangular region is labeled with one label
– or a probability distribution over labels (will discuss next time)



Decision Tree – Decision Boundary



Expressiveness

• Given a particular space of 
functions, you may not be 
able to represent everything

• What functions can decision 
trees represent?

• Decision trees can represent 
any function of the input 
attributes!
– Boolean operations (and, or, 

xor, etc.)? 
– Yes!
– All boolean functions?
– Yes!



Expressiveness
Decision trees have a variable-sized hypothesis space

• As the #nodes (or depth) increases, the hypothesis 
space grows
– Depth 1 (“decision stump”): can represent any boolean

function of one feature
– Depth 2:  any boolean function of two features; some 

involving three features (e.g.,                                                 )
– etc.

(x1 ^ x2) _ (¬x1 ^ ¬x3)

Based on slide by Pedro Domingos
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Problem Setting: 
•  Set of possible instances X 

–  each instance x in X is a feature vector 

–  e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot> 

•  Unknown target function f : XY

–  Y is discrete valued 

•  Set of function hypotheses H={ h | h : XY }

–  each hypothesis h is a decision tree 

–  trees sorts x to leaf, which assigns y 

Decision Tree Learning 

Decision Tree Learning 

Problem Setting: 
•  Set of possible instances X 

–  each instance x in X is a feature vector  

x = < x1, x2 … xn> 

•  Unknown target function f : XY

–  Y is discrete valued 

•  Set of function hypotheses H={ h | h : XY }

–  each hypothesis h is a decision tree 

Input: 
•  Training examples {<x(i),y(i)>} of unknown target function f

Output: 
•  Hypothesis h ∈ H that best approximates target function f

Decision Tree Learning

Slide by Tom Mitchell



Stages of (Batch) Machine Learning
Given: labeled training data

• Assumes each                         with

Train the model:
model ß classifier.train(X, Y )

Apply the model to new data:
• Given: new unlabeled instance

yprediction ß model.predict(x)

model

learner

X, Y 

x yprediction

X,Y = {hxi, yii}ni=1

xi ⇠ D(X ) yi = ftarget(xi)

x ⇠ D(X )



Basic Algorithm for Top-Down
Learning of Decision Trees 

[ID3, C4.5 by Quinlan]

node = root of decision tree
Main loop:
1. A ß the “best” decision attribute for the next node.
2. Assign A as decision attribute for node.
3. For each value of A, create a new descendant of node.
4. Sort training examples to leaf nodes.
5. If training examples are perfectly classified, stop.  Else, 

recurse over new leaf nodes.

How do we choose which attribute is best?



Choosing the Best Attribute
Key problem: choosing which attribute to split a 
given set of examples

• Some possibilities are:
– Random: Select any attribute at random 
– Least-Values: Choose the attribute with the smallest 

number of possible values 
– Most-Values: Choose the attribute with the largest 

number of possible values 
– Max-Gain: Choose the attribute that has the largest 

expected information gain
• i.e., attribute that results in smallest expected size of subtrees

rooted at its children

• The ID3 algorithm uses the Max-Gain method of 
selecting the best attribute



Example: Restaurant Domain (Russell & Norvig)

Model a patron’s decision of whether to wait for a table at a restaurant

~7,000 possible cases



Choosing an Attribute

Idea: a good attribute splits the examples into subsets 
that are (ideally) �all positive� or �all negative�

Which split is more informative: Patrons? or Type?

Based on Slide from M. desJardins & T. Finin



ID3-induced 
Decision Tree

Based on Slide from M. desJardins & T. Finin
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Information Gain

Which test is more informative?

Split over whether 
Balance exceeds 50K

Over 50KLess or equal 50K EmployedUnemployed

Split over whether 
applicant is employed

Based on slide by Pedro Domingos
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Impurity/Entropy (informal)
–Measures the level of impurity in a group of 

examples

Information Gain

Based on slide by Pedro Domingos
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Impurity

Very impure group Less impure Minimum 
impurity

Based on slide by Pedro Domingos
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Entropy: a common way to measure impurity

• Entropy = 

pi is the probability of class i

Compute it as the proportion of class i in the set.

• Entropy comes from information theory.  The higher 
the entropy the more the information content.

å-
i

ii pp 2log

What does that mean for learning from examples?

Based on slide by Pedro Domingos


