
Classification:
Decision Trees

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Byron Boots, with grateful acknowledgement to Eric Eaton and the many
others who made their course materials freely available online. Feel free to reuse or adapt these slides for
your own academic purposes, provided that you include proper attribution.

Last Time
• Common decomposition of machine learning, based on

differences in inputs and outputs
– Supervised Learning: Learn a function mapping inputs to outputs

using labeled training data (you get instances/examples with both
inputs and ground truth output)

– Unsupervised Learning: Summarize something about input data
without any labels, for example clustering instances that are “similar”

– Reinforcement Learning: Learn how to make decisions given a sparse
reward

• ML is an interaction between:
– data (features/attributes of data are important!)
– the the function class (parameterized model) you choose, and
– the optimization algorithm you use to explore space of functions to

find the “best” one

Supervised Learning: Function Approximation

Problem Setting
• Set of instances
• Set of labels
• Unknown target function
• Set of function hypotheses

Input: Training examples of unknown target function f

Output: Hypothesis that best approximates f

f : X ! Y
H = {h | h : X ! Y}

h 2 H

Based on slide by Tom Mitchell

{hxi, yii}ni=1 = {hx1, y1i , . . . , hxn, yni}

X
Y

Problem Setting
• Set of instances (inputs, independent variables…)

• Set of labels (outputs, targets, dependent variables…)

• Unknown target function
• Set of function hypotheses

Input: Training examples of unknown target function f

Output: Hypothesis that best approximates f

X
Y

f : X ! Y
H = {h | h : X ! Y}

h 2 H

Based on slide by Tom Mitchell

{hxi, yii}ni=1 = {hx1, y1i , . . . , hxn, yni}

Supervised Learning: Function Approximation

Problem Setting
• Set of instances
• Set of labels
• Unknown target function
• Set of function hypotheses

• Performance metric
Input: Training examples of unknown target function f

Output: Hypothesis that “best” approximates f
according to the performance metric

X
Y

f : X ! Y
H = {h | h : X ! Y}

h 2 H

Based on slide by Tom Mitchell

{hxi, yii}ni=1 = {hx1, y1i , . . . , hxn, yni}

Supervised Learning: Function Approximation

Sample Dataset (was Tennis Played?)

• Columns denote features Xi

• Rows denote labeled instances
• Class label denotes whether a tennis game was played

hxi, yii

hxi, yii

Decision Tree
• A possible decision tree for the data:

• Each internal node: test one attribute Xi

• Each branch from a node: selects one value for Xi

• Each leaf node: predict Y

Based on slide by Tom Mitchell

Decision Tree
• A possible decision tree for the data:

• What prediction would we make for
<outlook=sunny, temperature=hot, humidity=high, wind=weak> ?

Based on slide by Tom Mitchell

Decision Tree
• If features are continuous, internal nodes can

test the value of a feature against a threshold

9

Decision Tree – Decision Boundary

10

Decision
boundary

• Decision trees divide the feature space into axis-parallel
(hyper-)rectangles

• Each rectangular region is labeled with one label
– or a probability distribution over labels (will discuss next time)

Decision Tree – Decision Boundary

Expressiveness

• Given a particular space of
functions, you may not be
able to represent everything

• What functions can decision
trees represent?

• Decision trees can represent
any function of the input
attributes!
– Boolean operations (and, or,

xor, etc.)?
– Yes!
– All boolean functions?
– Yes!

Expressiveness
Decision trees have a variable-sized hypothesis space

• As the #nodes (or depth) increases, the hypothesis
space grows
– Depth 1 (“decision stump”): can represent any boolean

function of one feature
– Depth 2: any boolean function of two features; some

involving three features (e.g.,)
– etc.

(x1 ^ x2) _ (¬x1 ^ ¬x3)

Based on slide by Pedro Domingos

8

Problem Setting:
•  Set of possible instances X

–  each instance x in X is a feature vector

–  e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>

•  Unknown target function f : XY

–  Y is discrete valued

•  Set of function hypotheses H={ h | h : XY }

–  each hypothesis h is a decision tree

–  trees sorts x to leaf, which assigns y

Decision Tree Learning

Decision Tree Learning

Problem Setting:
•  Set of possible instances X

–  each instance x in X is a feature vector

x = < x1, x2 … xn>

•  Unknown target function f : XY

–  Y is discrete valued

•  Set of function hypotheses H={ h | h : XY }

–  each hypothesis h is a decision tree

Input:
•  Training examples {<x(i),y(i)>} of unknown target function f

Output:
•  Hypothesis h ∈ H that best approximates target function f

Decision Tree Learning

Slide by Tom Mitchell

Stages of (Batch) Machine Learning
Given: labeled training data

• Assumes each with

Train the model:
model ß classifier.train(X, Y)

Apply the model to new data:
• Given: new unlabeled instance

yprediction ß model.predict(x)

model

learner

X, Y

x yprediction

X,Y = {hxi, yii}ni=1

xi ⇠ D(X) yi = ftarget(xi)

x ⇠ D(X)

Basic Algorithm for Top-Down
Learning of Decision Trees

[ID3, C4.5 by Quinlan]

node = root of decision tree
Main loop:
1. A ß the “best” decision attribute for the next node.
2. Assign A as decision attribute for node.
3. For each value of A, create a new descendant of node.
4. Sort training examples to leaf nodes.
5. If training examples are perfectly classified, stop. Else,

recurse over new leaf nodes.

How do we choose which attribute is best?

Choosing the Best Attribute
Key problem: choosing which attribute to split a
given set of examples

• Some possibilities are:
– Random: Select any attribute at random
– Least-Values: Choose the attribute with the smallest

number of possible values
– Most-Values: Choose the attribute with the largest

number of possible values
– Max-Gain: Choose the attribute that has the largest

expected information gain
• i.e., attribute that results in smallest expected size of subtrees

rooted at its children

• The ID3 algorithm uses the Max-Gain method of
selecting the best attribute

Example: Restaurant Domain (Russell & Norvig)

Model a patron’s decision of whether to wait for a table at a restaurant

~7,000 possible cases

Choosing an Attribute

Idea: a good attribute splits the examples into subsets
that are (ideally) �all positive� or �all negative�

Which split is more informative: Patrons? or Type?

Based on Slide from M. desJardins & T. Finin

ID3-induced
Decision Tree

Based on Slide from M. desJardins & T. Finin

21

Information Gain

Which test is more informative?

Split over whether
Balance exceeds 50K

Over 50KLess or equal 50K EmployedUnemployed

Split over whether
applicant is employed

Based on slide by Pedro Domingos

22

Impurity/Entropy (informal)
–Measures the level of impurity in a group of

examples

Information Gain

Based on slide by Pedro Domingos

23

Impurity

Very impure group Less impure Minimum
impurity

Based on slide by Pedro Domingos

24

Entropy: a common way to measure impurity

• Entropy =

pi is the probability of class i

Compute it as the proportion of class i in the set.

• Entropy comes from information theory. The higher
the entropy the more the information content.

å-
i

ii pp 2log

What does that mean for learning from examples?

Based on slide by Pedro Domingos

