

Naïve Bayes

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton's slides and grateful acknowledgement to the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Bayes' Rule

• Recall Baye's Rule:

 $P(\text{hypothesis} \mid \text{evidence}) = \frac{P(\text{evidence} \mid \text{hypothesis}) \times P(\text{hypothesis})}{P(\text{evidence})}$

• Equivalently, we can write:

$$P(Y = y_k \mid X = \mathbf{x}_i) = \frac{P(Y = y_k)P(X = \mathbf{x}_i \mid Y = y_k)}{P(X = \mathbf{x}_i)}$$

where X is a random variable representing the evidence and Y is a random variable for the label (our hypothesis)

• This is actually short for:

$$P(Y = y_k \mid X = \mathbf{x}_i) = \frac{P(Y = y_k)P(X_1 = x_{i,1} \land \dots \land X_d = x_{i,d} \mid Y = y_k)}{P(X_1 = x_{i,1} \land \dots \land X_d = x_{i,d})}$$

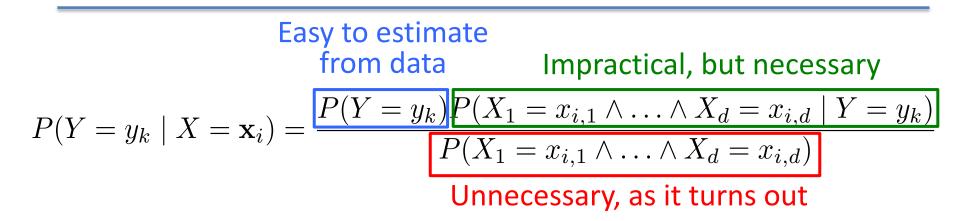
where X_i denotes the random variable for the *j*th feature

Naïve Bayes Classifier

Idea: Use the training data to estimate

$$P(X \mid Y)$$
 and $P(Y)$

Then, use Bayes rule to infer $P(Y|X_{new})$ for new data



• Estimating the joint probability distribution $P(X_1, X_2, \dots, X_d \mid Y)$ is not practical

Naïve Bayes Classifier

Problem: estimating the joint PD or CPD isn't practical

Can severely overfit, as we saw before

However, if we make the assumption that the attributes are independent given the class label, estimation is easy!

$$P(X_1, X_2, \dots, X_d \mid Y) = \prod_{j=1}^d P(X_j \mid Y)$$

- In other words, we assume all attributes are conditionally independent given Y
- Often this assumption is violated in practice, but more on that later...

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

. . .

P(play) = ? P(Sky = sunny | play) = ? P(Humid = high | play) = ?

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

P(play) = ? P(Sky = sunny | play) = ? P(Humid = high | play) = ?

. . .

P(---play) = ?

. . .

P(Sky = sunny | ¬play) = ? P(Humid = high | ¬play) = ?

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = ? P(Humid = high | play) = ?

. . .

 $P(\neg play) = 1/4$

P(Sky = sunny | ¬play) = ? P(Humid = high | ¬play) = ?

7

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	Water	Forecast	Play?
sunny						yes
sunny						yes
rainy	cold	high	strong	warm	change	no
sunny						yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = ? P(Humid = high | play) = ?

. . .

 $P(\neg play) = 1/4$ $P(Sky = sunny | \neg play) = ?$ $P(Humid = high | \neg play) = ?$

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	Water	Forecast	Play?
sunny						yes
sunny						yes
rainy	cold	high	strong	warm	change	no
sunny						yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = 1 P(Humid = high | play) = ?

. . .

 $P(\neg play) = 1/4$ $P(Sky = sunny | \neg play) = ?$ $P(Humid = high | \neg play) = ?$

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy						no
sunny	warm	high	strong	cool	change	yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = 1 P(Humid = high | play) = ?

. . .

$$P(\neg play) = 1/4$$

P(Sky = sunny | ¬play) = ?

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy						no
sunny	warm	high	strong	cool	change	yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = 1 P(Humid = high | play) = ?

. . .

$$P(\neg play) = 1/4$$

 $P(Sky = sunny | \neg play) = 0$

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
		normal				yes
		high				yes
rainy	cold	high	strong	warm	change	no
		high				yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = 1 P(Humid = high | play) = ?

...

$$P(\neg play) = 1/4$$
$$P(Sky = sunny | \neg play) = 0$$
$$P(Humid = high | \neg play) = ?$$

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
		normal				yes
		high				yes
rainy	cold	high	strong	warm	change	no
		high				yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = 1 P(Humid = high | play) = 2/3

...

$$P(\neg play) = 1/4$$

 $P(Sky = sunny | \neg play) = 0$
 $P(Humid = high | \neg play) = ?$

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
		high				no
sunny	warm	high	strong	cool	change	yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = 1 P(Humid = high | play) = 2/3

$$P(\neg play) = 1/4$$
$$P(Sky = sunny | \neg play) = 0$$
$$P(Humid = high | \neg play) = ?$$

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
		high				no
sunny	warm	high	strong	cool	change	yes

. . .

P(play) = 3/4 P(Sky = sunny | play) = 1 P(Humid = high | play) = 2/3

$$P(\neg play) = 1/4$$
$$P(Sky = sunny | \neg play) = 0$$
$$P(Humid = high | \neg play) = 1$$

Laplace Smoothing

- Notice that some probabilities estimated by counting might be zero
 - Possible overfitting!
- Fix by using Laplace smoothing:
 - Adds 1 to each count

$$P(X_j = v \mid Y = y_k) = \frac{c_v + 1}{\sum_{v' \in \text{values}(X_j)} c_{v'} + |\text{values}(X_j)|}$$

where

- c_v is the count of training instances with a value of v for attribute j and class label y_k
- $|values(X_j)|$ is the number of values X_j can take on

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	Play?
sunny						yes
sunny						yes
rainy	cold	high	strong	warm	change	no
sunny						yes

. . .

P(play) = 3/4 $P(\neg play) = 1/4$ P(Sky = sunny | play) = 4/5 $P(Sky = sunny | \neg play) = ?$ P(Humid = high | play) = ? $P(Humid = high | \neg play) = ?$

...

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy						no
sunny	warm	high	strong	cool	change	yes

. . .

P(play) = 3/4 $P(\neg play) = 1/4$ P(Sky = sunny | play) = 4/5 $P(Sky = sunny | \neg play) = 1/3$ P(Humid = high | play) = ? $P(Humid = high | \neg play) = ?$

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u> <u>Water</u> <u>Forecast</u>			Play?
		normal				yes
		high				yes
rainy	cold	high	strong	warm	change	no
		high				yes

. . .

P(play) = 3/4 $P(\neg play) = 1/4$ $P(Sky = sunny | play) = 4/5 P(Sky = sunny | \neg play) = 1/3$ $P(Humid = high | play) = 3/5 P(Humid = high | \neg play) = ?$

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	Temp	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong warm sam		same	yes
		high				no
sunny	warm	high	strong	cool	change	yes

. . .

P(play) = 3/4 $P(\neg play) = 1/4$ $P(Sky = sunny | play) = 4/5 P(Sky = sunny | \neg play) = 1/3$ $P(Humid = high | play) = 3/5 P(Humid = high | \neg play) = 2/3$

Using the Naïve Bayes Classifier

• Now, we have

$$P(Y = y_k \mid X = \mathbf{x}_i) = \frac{P(Y = y_k) \prod_{j=1}^d P(X_j = x_{i,j} \mid Y = y_k)}{P(X = \mathbf{x}_i)}$$

This is constant for a given instance

and so irrelevant to our prediction

In practice, we use log-probabilities to prevent underflow

• To classify a new point **x**,

$$h(\mathbf{x}) = \underset{y_k}{\operatorname{arg\,max}} P(Y = y_k) \prod_{j=1}^d P(X_j = x_j \mid Y = y_k)$$

$$\int_{j^{\text{th}}} f^{\text{th}} \text{ attribute value of } \mathbf{x}$$

$$= \underset{y_k}{\operatorname{arg\,max}} \log P(Y = y_k) + \sum_{j=1}^d \log P(X_j = x_j \mid Y = y_k)$$

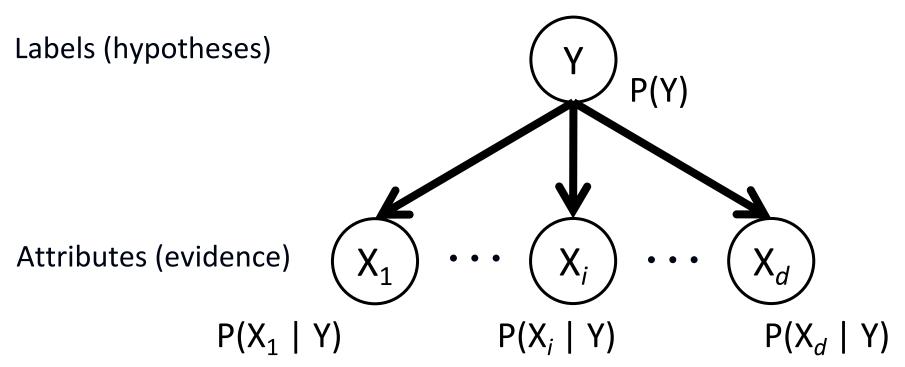
The Naïve Bayes Classifier Algorithm

- For each class label y_k
 - Estimate $P(Y = y_k)$ from the data
 - For each value $x_{i,i}$ of each attribute X_i
 - Estimate $P(X_i = x_{i,j} | Y = y_k)$
- Classify a new point via:

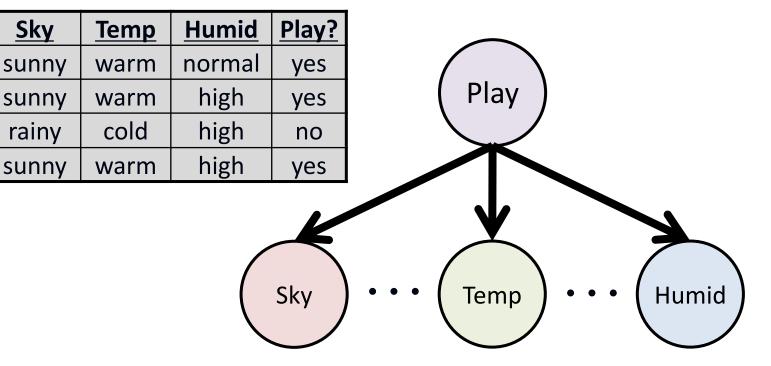
$$h(\mathbf{x}) = \underset{y_k}{\arg\max} \log P(Y = y_k) + \sum_{j=1}^d \log P(X_j = x_j \mid Y = y_k)$$

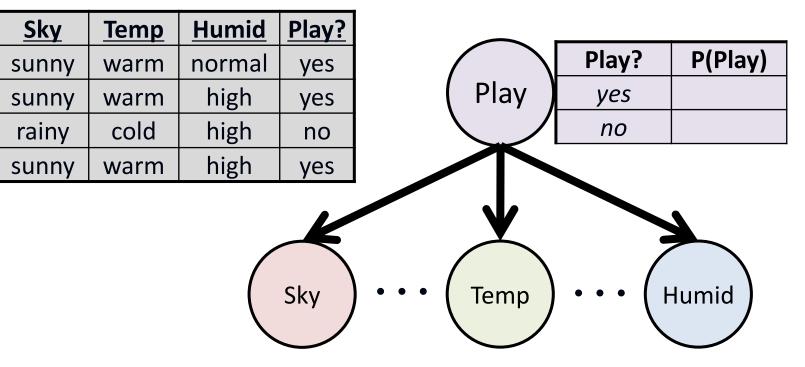
 In practice, the independence assumption doesn't often hold true, but Naïve Bayes performs very well despite this

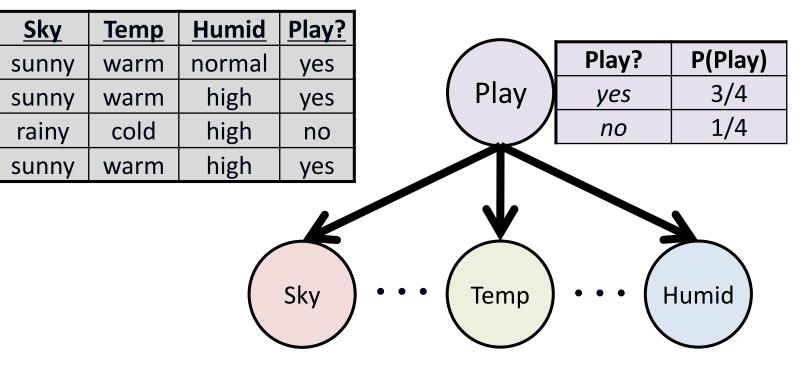
The Naïve Bayes Graphical Model

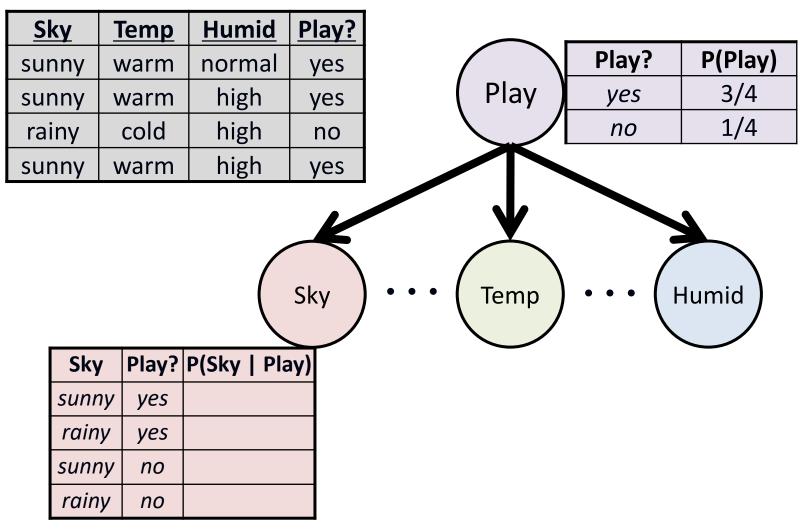


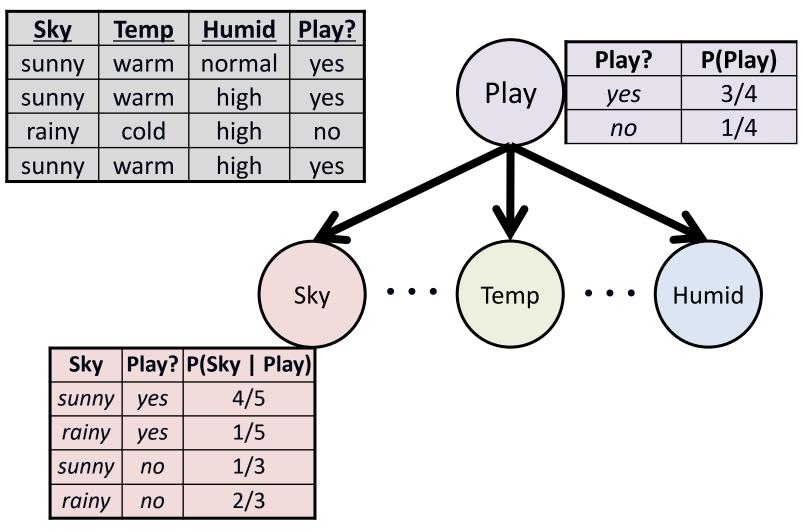
- Nodes denote random variables
- Edges denote dependency
- Each node has an associated conditional probability table (CPT), conditioned upon its parents

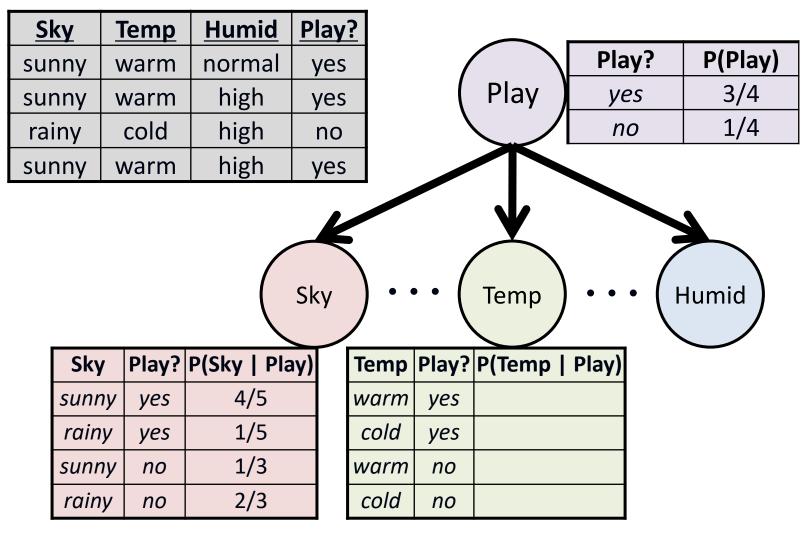


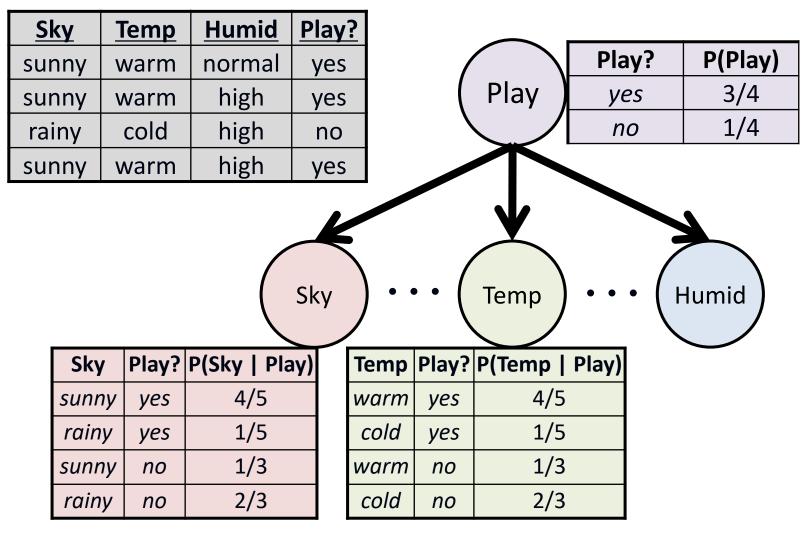


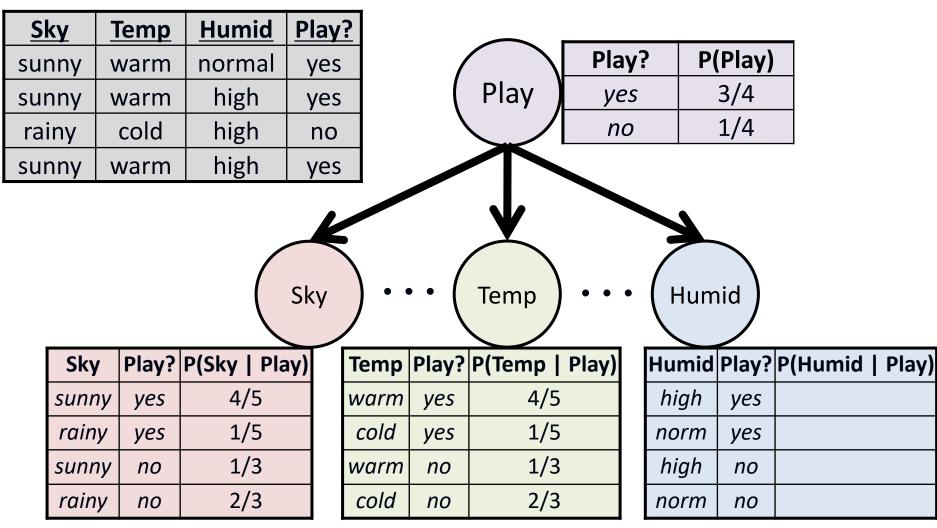


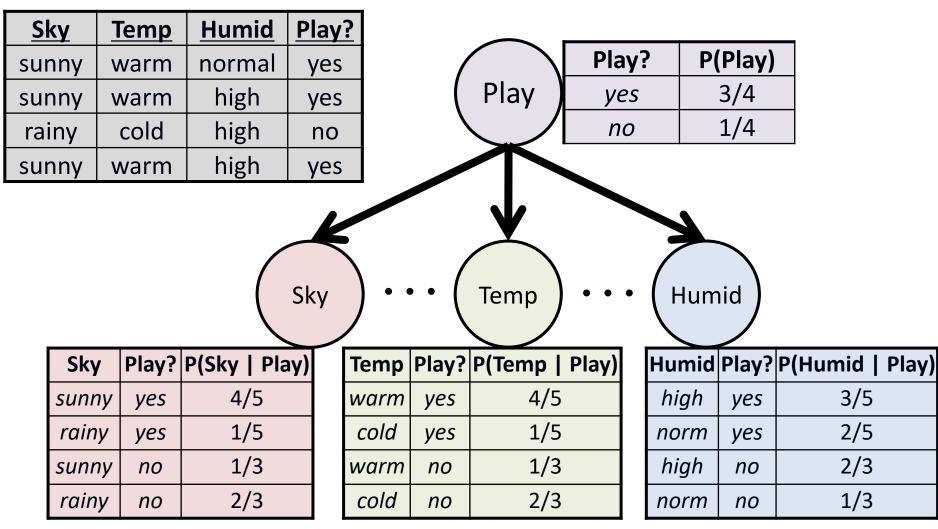




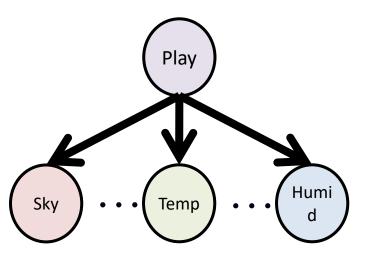








Example Using NB for Classification



Play?	P(Play)
yes	3/4
no	1/4

Temp	Play?	P(Temp Play)		
warm	yes	4/5		
cold	yes	1/5		
warm	no	1/3		
cold	no	2/3		

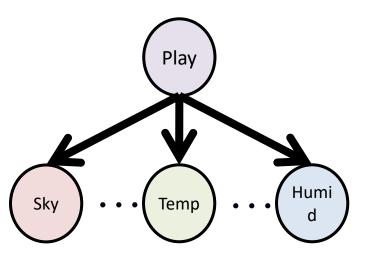
Sky	Play?	P(Sky Play)		Hu
sunny	yes	4/5		h
rainy	yes	1/5		nc
sunny	no	1/3		h
rainy	no	2/3		nc

Humid	Play?	P(Humid Play)
high	yes	3/5
norm	yes	2/5
high	no	2/3
norm	no	1/3

$$h(\mathbf{x}) = \underset{y_k}{\arg\max} \log P(Y = y_k) + \sum_{j=1}^d \log P(X_j = x_j \mid Y = y_k)$$

Goal: Predict label for **x** = (rainy, warm, normal)

Example Using NB for Classification



Play?	P(Play)
yes	3/4
no	1/4

Temp	Play?	P(Temp Play)
warm	yes	4/5
cold	yes	1/5
warm	no	1/3
cold	no	2/3

Sky	Play?	P(Sky Play)	Humid	Play?	P(Humid Play)
sunny	yes	4/5	high	yes	3/5
rainy	yes	1/5	norm	yes	2/5
sunny	no	1/3	high	no	2/3
rainy	no	2/3	norm	no	1/3

Predict label for: **x** = (rainy, warm, normal)

 $P(\text{play} \mid \mathbf{x}) \propto \log P(\text{play}) + \log P(\text{rainy} \mid \text{play}) + \log P(\text{warm} \mid \text{play}) + \log P(\text{normal} \mid \text{play}) \\ \propto \log 3/4 + \log 1/5 + \log 4/5 + \log 2/5 = -1.319 \quad \text{predict}_{\text{PLAY}}$

 $P(\neg \text{play} \mid \mathbf{x}) \propto \log P(\neg \text{play}) + \log P(\text{rainy} \mid \neg \text{play}) + \log P(\text{warm} \mid \neg \text{play}) + \log P(\text{normal} \mid \neg \text{play}))$ $\propto \log 1/4 + \log 2/3 + \log 1/3 + \log 1/3 = -1.732$

Naïve Bayes Summary

Advantages:

- Fast to train (single scan through data)
- Fast to classify
- Not sensitive to irrelevant features
- Can handle real-valued data (e.g. fit Gaussian for each attribute)
- Handles streaming data well

Disadvantages:

• Assumes independence of features