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The Joint Distribution
Recipe for making a joint 

distribution of d variables:

1. Make a probability table listing 
all combinations of values of 
your variables (if there are d
Boolean variables then the 
table will have 2d rows).

1. For each combination of 
values, say how probable it is.

2. If you subscribe to the axioms 
of probability, those numbers 
must sum to 1.

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

e.g., Boolean variables A, B, C
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Inferring Marginal Probabilities from the Joint
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alarm ¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary 0.01 0.08 0.001 0.009
¬burglary 0.01 0.09 0.01 0.79

P (alarm) =
X

b,e

P (alarm ^ Burglary = b ^ Earthquake = e)

= 0.01 + 0.08 + 0.01 + 0.09 = 0.19

P (burglary) =
X

a,e

P (Alarm = a ^ burglary ^ Earthquake = e)

= 0.01 + 0.08 + 0.001 + 0.009 = 0.1

P (alarm) =
X

b,e

P (alarm ^ Burglary = b ^ Earthquake = e)

= 0.01 + 0.08 + 0.01 + 0.09 = 0.19

P (alarm) =
X

b,e

P (alarm ^ Burglary = b ^ Earthquake = e)

= 0.01 + 0.08 + 0.01 + 0.09 = 0.19

P (burglary) =
X

a,e

P (Alarm = a ^ burglary ^ Earthquake = e)

= 0.01 + 0.08 + 0.001 + 0.009 = 0.1

P (burglary) =
X

a,e

P (Alarm = a ^ burglary ^ Earthquake = e)

= 0.01 + 0.08 + 0.001 + 0.009 = 0.1



Conditional Probability
• P(A | B) =  Probability that A is true given B is true
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U

A
B

What if we already know 
that B is true?

That knowledge changes 
the probability of A
• Because we know we’re in a 

world where B is true

P (A | B) =
P (A ^B)

P (B)

P (A ^B) = P (A | B)⇥ P (B)



Example:  Conditional Probabilities

P(Alarm, Burglary) =
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alarm ¬alarm
burglary 0.09 0.01
¬burglary 0.1 0.8

P (A | B) =
P (A ^B)

P (B)

P (A ^B) = P (A | B)⇥ P (B)

P(burglary | alarm) 

P(alarm | burglary) 

P(burglary Ù alarm)  

= P(burglary Ù alarm) / P(alarm)
= 0.09 / 0.19 = 0.47

= P(burglary Ù alarm) / P(burglary)
= 0.09 / 0.1 = 0.9

= P(burglary | alarm) P(alarm) 
= 0.47 * 0.19 = 0.09



Example: Inference from Conditional Probability
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Headache
Flu

P (A | B) =
P (A ^B)

P (B)

P (A ^B) = P (A | B)⇥ P (B)

P(headache) = 1/10
P(flu) = 1/40
P(headache | flu) = 1/2

“Headaches are rare and flu is rarer, but 
if you’re coming down with the flu, then 
there’s a 50-50 chance you’ll have a 
headache.”

Based on slide by Andrew Moore
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Headache
Flu

P (A | B) =
P (A ^B)

P (B)

P (A ^B) = P (A | B)⇥ P (B)

P(headache) = 1/10
P(flu) = 1/40
P(headache | flu) = 1/2

One day you wake up with a headache. You 
think: “Drat! 50% of flus are associated 
with headaches so I must have a 50-50 
chance of coming down with flu.”

Is this reasoning good?
Based on slide by Andrew Moore

Example: Inference from Conditional Probability
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P (A | B) =
P (A ^B)

P (B)

P (A ^B) = P (A | B)⇥ P (B)

P(headache) = 1/10 Want to solve for:
P(flu) = 1/40 P(headache Ù flu) = ?
P(headache | flu) = 1/2 P(flu | headache)  = ?

P(headache Ù flu) = P(headache | flu) x P(flu) 
= 1/2 x 1/40 = 0.0125

P(flu | headache)  = P(headache Ù flu) / P(headache) 
= 0.0125 / 0.1 = 0.125

Based on example by Andrew Moore

Example: Inference from Conditional Probability



Bayes, Thomas (1763) An essay towards 
solving a problem in the doctrine of 
chances. Philosophical Transactions of 
the Royal Society of London, 53:370-418

Bayes’ Rule

• Exactly the process we just used
• The most important formula in 

probabilistic machine learning

(Super Easy) Derivation:

Just set equal... 

and solve...

P (A | B) =
P (B | A)⇥ P (A)

P (B)

P (A ^B) = P (A | B)⇥ P (B)

P (B ^A) = P (B | A)⇥ P (A)

P (A | B)⇥ P (B) = P (B | A)⇥ P (A)

these are the same



Bayes’ Rule
• Allows us to reason from evidence to hypotheses
• Another way of thinking about Bayes’ rule:

In the flu example:
P(headache) = 1/10 P(flu) = 1/40
P(headache | flu) = 1/2

Given evidence of headache, what is P(flu | headache) ?

Solve via Bayes rule!

P (hypothesis | evidence) = P (evidence | hypothesis)⇥ P (hypothesis)

P (evidence)



Independence
• When two sets of propositions do not affect each 

others’ probabilities, we call them independent
• Formal definition:

For example, {moon-phase, light-level} might be 
independent of {burglary, alarm, earthquake}
• Then again, maybe not:  Burglars might be more likely to burglarize 

houses when there’s a new moon (and hence little light)
• But if we know the light level, the moon phase doesn’t affect whether 

we are burglarized
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A??B $ P (A ^B) = P (A)⇥ P (B)

$ P (A | B) = P (A)



Exercise: Independence

Is smart independent of study?

Is prepared independent of study?

P(smart Ù study Ù prep)
smart ¬smart

study ¬study study ¬study

prepared 0.432 0.16 0.084 0.008

¬prepared 0.048 0.16 0.036 0.072



Exercise: Independence

Is smart independent of study?
P(study Ù smart) = 0.432 + 0.048 = 0.48

P(study) = 0.432 + 0.048 + 0.084 + 0.036 = 0.6 
P(smart) = 0.432 + 0.048 + 0.16 + 0.16 = 0.8
P(study) x P(smart) = 0.6 x 0.8 = 0.48

Is prepared independent of study?

P(smart Ù study Ù prep)
smart ¬smart

study ¬study study ¬study

prepared 0.432 0.16 0.084 0.008

¬prepared 0.048 0.16 0.036 0.072

So yes!



Conditional Independence
• Absolute independence of A and B:

Conditional independence of A and B given C

• e.g., Moon-Phase and Burglary are conditionally independent 
given Light-Level

• This lets us decompose the joint distribution:

– Conditional independence is weaker than absolute 
independence, but still useful in decomposing the full joint
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A??B | C $ P (A ^B | C) = P (A | C)⇥ P (B | C)

P (A ^B ^ C) = P (A | C)⇥ P (B | C)⇥ P (C)

A??B $ P (A ^B) = P (A)⇥ P (B)

$ P (A | B) = P (A)



Take Home Exercise: 
Conditional independence

Is smart conditionally independent of prepared, given study?

Is study conditionally independent of prepared, given smart?

P(smart Ù study Ù prep)
smart ¬smart

study ¬study study ¬study

prepared 0.432 0.16 0.084 0.008

¬prepared 0.048 0.16 0.036 0.072



Summary: Essential Probability 
Concepts

• Marginalization: 

• Conditional Probability:

• Bayes’ Rule:

• Independence:
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P (A | B) =
P (A ^B)

P (B)

P (A ^B) = P (A | B)⇥ P (B)

A??B $ P (A ^B) = P (A)⇥ P (B)

$ P (A | B) = P (A)

P (A | B) =
P (B | A)⇥ P (A)

P (B)

A??B | C $ P (A ^B | C) = P (A | C)⇥ P (B | C)

P (B) =
X

v2values(A)

P (B ^A = v)



Density Estimation
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How Can We Obtain a Joint Distribution?
Option 1: Elicit it from an expert human

Option 2: Build it up from simpler probabilistic facts
• e.g, if we knew

P(a) = 0.7 P(b|a) = 0.2 P(b|¬a) = 0.1
then, we could compute P(a Ù b)

Option 3: Learn it from data...

18Based on slide by Andrew Moore



Learning a Joint Distribution

Build a JD table for your 
attributes in which the 
probabilities are unspecified

Then, fill in each row with:

records ofnumber  total
row matching records)row(ˆ =P

A B C Prob
0 0 0 ?

0 0 1 ?

0 1 0 ?

0 1 1 ?

1 0 0 ?

1 0 1 ?

1 1 0 ?

1 1 1 ?

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

Fraction of all records in which
A and B are true but C is false

Step 1: Step 2:

Slide © Andrew Moore



Density Estimation
• Our joint distribution learner is an example of 

something called Density Estimation
• A Density Estimator learns a mapping from a set of 

attributes to a probability

Density
Estimator

Probability
Input
Attributes

Slide © Andrew Moore



Regressor
Prediction of 
real-valued 
output

Input
Attributes

Density Estimation

Compare it against the two other major kinds of models:

Classifier
Prediction of 
categorical 
output

Input
Attributes

Density
Estimator

Probability
of inputs

Input
Attributes

Slide © Andrew Moore



Evaluating Density Estimation

Test set 
Accuracy

?

Test set 
Accuracy

Test-set criterion for 
estimating performance 

on future data

Regressor
Prediction of 
real-valued 
output

Input
Attributes

Classifier
Prediction of 
categorical 
output

Input
Attributes

Density
Estimator

Probability
Input
Attributes

Slide © Andrew Moore



• Given a record x, a density estimator M can tell you 
how likely the record is:

• The density estimator can also tell you how likely the 
dataset is:
– Under the assumption that all records were independently

generated from the Density Estimator’s JD    (that is, i.i.d.)

Evaluating a Density Estimator

P̂ (x | M)

P̂ (dataset | M) = P̂ (x1 ^ x2 ^ . . . ^ xn | M) =
nY

i=1

P̂ (xi | M)

dataset

Slide by Andrew Moore



Example Small Dataset: Miles Per Gallon
From the UCI repository (thanks to Ross Quinlan)
• 192 records in the training set

mpg modelyear maker

good 75to78 asia
bad 70to74 america
bad 75to78 europe
bad 70to74 america
bad 70to74 america
bad 70to74 asia
bad 70to74 asia
bad 75to78 america
: : :
: : :
: : :
bad 70to74 america
good 79to83 america
bad 75to78 america
good 79to83 america
bad 75to78 america
good 79to83 america
good 79to83 america
bad 70to74 america
good 75to78 europe
bad 75to78 europe

Slide by Andrew Moore



Example Small Dataset: Miles Per Gallon
From the UCI repository (thanks to Ross Quinlan)
• 192 records in the training set

mpg modelyear maker

good 75to78 asia
bad 70to74 america
bad 75to78 europe
bad 70to74 america
bad 70to74 america
bad 70to74 asia
bad 70to74 asia
bad 75to78 america
: : :
: : :
: : :
bad 70to74 america
good 79to83 america
bad 75to78 america
good 79to83 america
bad 75to78 america
good 79to83 america
good 79to83 america
bad 70to74 america
good 75to78 europe
bad 75to78 europe

P̂ (dataset | M) =
nY

i=1

P̂ (xi | M)

= 3.4⇥ 10�203 (in this case)

Slide by Andrew Moore



Log Probabilities
• For decent sized data sets, this product will underflow

• Therefore, since probabilities of datasets get so small, 
we usually use log probabilities

log P̂ (dataset | M) = log
nY

i=1

P̂ (xi | M) =
nX

i=1

log P̂ (xi | M)

P̂ (dataset | M) =
nY

i=1

P̂ (xi | M)

= 3.4⇥ 10�203 (in this case)

Based on slide by Andrew Moore



Example Small Dataset: Miles Per Gallon
From the UCI repository (thanks to Ross Quinlan)
• 192 records in the training set

mpg modelyear maker

good 75to78 asia
bad 70to74 america
bad 75to78 europe
bad 70to74 america
bad 70to74 america
bad 70to74 asia
bad 70to74 asia
bad 75to78 america
: : :
: : :
: : :
bad 70to74 america
good 79to83 america
bad 75to78 america
good 79to83 america
bad 75to78 america
good 79to83 america
good 79to83 america
bad 70to74 america
good 75to78 europe
bad 75to78 europe

Slide by Andrew Moore

log P̂ (dataset | M) =
nX

i=1

log P̂ (xi | M)

= �466.19 (in this case)



Pros/Cons of the Joint Density Estimator
The Good News:
• We can learn a Density Estimator from data.
• Density estimators can do many good things…

– Can sort the records by probability, and thus spot weird 
records (anomaly detection)

– Can do inference
– Ingredient for Bayes Classifiers (coming very soon...)

The Bad News:
• Density estimation by directly learning the joint is 

impractical, may result in adverse behavior

Slide by Andrew Moore



Curse of Dimensionality

Slide by Christopher Bishop



The Joint Density Estimator on a Test Set

• An independent test set with 196 cars has a much 
worse log-likelihood
– Actually it’s a billion quintillion quintillion quintillion 

quintillion times less likely

• Density estimators can overfit...
...and the full joint density estimator is the 
overfittiest of them all!

Slide by Andrew Moore
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Overfitting Density Estimators

If this ever happens, the 
joint PDE learns there are 
certain combinations that 
are impossible

log P̂ (dataset | M) =
nX

i=1

log P̂ (xi | M)

= �1 if for any i, P̂ (xi | M) = 0

Slide by Andrew Moore


