

Support Vector Machines \& Kernels

Doing really well with linear decision surfaces

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton's slides and grateful acknowledgement to the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Understanding the Dual

Maximize $J(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$

$$
\begin{aligned}
& \text { s.t. } \alpha_{i} \geq 0 \quad \forall i \\
& \qquad \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

In the solution, either:

- $\boldsymbol{\alpha}_{\mathrm{i}}>0$ and the constraint is tight $\left(y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right)=1\right)$
$>$ point is a support vector
- $\alpha_{i}=0$
$>$ point is not a support vector

SVM Dual Representation

Maximize $J(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$

$$
\begin{aligned}
& \text { s.t. } \alpha_{i} \geq 0 \quad \forall i \\
& \quad \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

The decision function is given by

$$
h(\mathbf{x})=\operatorname{sign}\left(\sum_{i \in \mathcal{S} \mathcal{V}} \alpha_{i} y_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle+b\right)
$$

What if Data Are Not Linearly Separable?

- Cannot find $\boldsymbol{\theta}$ that satisfies $y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right) \geq 1 \quad \forall i$
- Introduce slack variables ξ_{i}

$$
y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right) \geq 1-\xi_{i} \quad \forall i
$$

- New problem:

$$
\begin{aligned}
\min _{\boldsymbol{\theta}} & \frac{1}{2} \sum_{j=1}^{d} \theta_{j}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right) \geq 1-\xi_{i} \quad \forall i
\end{aligned}
$$

Strengths of SVMs

- Good generalization in theory
- Good generalization in practice
- Work well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick ...

What if Surface is Non-Linear?

$000_{0}^{0} 0_{0}^{0} 0_{0}$ $\int_{0}^{0} x^{x} x^{x} 0_{0}^{0}$ 00 o 0

Kernel Methods

Making the Non-Linear Linear

When Linear Separators Fail

Mapping into a New Feature Space

Input Space

$$
\Phi: \mathcal{X} \mapsto \hat{\mathcal{X}}=\Phi(\mathbf{x})
$$

- For example, with $\mathbf{x}_{i} \in \mathbb{R}^{2}$

$$
\Phi\left(\left[x_{i 1}, x_{i 2}\right]\right)=\left[x_{i 1}, x_{i 2}, x_{i 1} x_{i 2}, x_{i 1}^{2}, x_{i 2}^{2}\right]
$$

- Rather than run SVM on x_{i}, run it on $\Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
- Find non-linear separator in input space
- What if $\Phi\left(\mathrm{x}_{\mathrm{i}}\right)$ is really big?
- Use kernels to compute it implicitly!

Kernels

- Find kernel K such that

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle
$$

- Computing $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ should be efficient, much more so than computing $\Phi\left(\mathrm{x}_{\mathrm{i}}\right)$ and $\Phi\left(\mathrm{x}_{\mathrm{j}}\right)$
- Use $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ in SVM algorithm rather than $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$

The Polynomial Kernel

Let $\quad \mathbf{x}_{i}=\left[x_{i 1}, x_{i 2}\right]$ and $\mathbf{x}_{j}=\left[x_{j 1}, x_{j 2}\right]$
Consider the following function:

$$
\begin{aligned}
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle^{2} \\
& =\left(x_{i 1} x_{j 1}+x_{i 2} x_{j 2}\right)^{2} \\
& =\left(x_{i 1}^{2} x_{j 1}^{2}+x_{i 2}^{2} x_{j 2}^{2}+2 x_{i 1} x_{i 2} x_{j 1} x_{j 2}\right) \\
& =\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& \Phi\left(\mathbf{x}_{i}\right)=\left[x_{i 1}^{2}, x_{i 2}^{2}, \sqrt{2} x_{i 1} x_{i 2}\right] \\
& \Phi\left(\mathbf{x}_{j}\right)=\left[x_{j 1}^{2}, x_{j 2}^{2}, \sqrt{2} x_{j 1} x_{j 2}\right]
\end{aligned}
$$

The Polynomial Kernel

- Given by $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle^{d}$
$-\Phi(\mathrm{x})$ contains all monomials of degree d
- Useful in visual pattern recognition
- Example:
- $16 x 16$ pixel image
- 10^{10} monomials of degree 5
- Never explicitly compute $\Phi(\mathrm{x})$!
- Variation: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+1\right)^{d}$
- Adds all lower-order monomials (degrees $1, \ldots, \mathrm{~d})$!

The Gaussian Kernel

- Also called Radial Basis Function (RBF) kernel

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Has value 1 when $x_{i}=x_{j}$
- Value falls off to 0 with increasing distance
- Note: Need to do feature scaling before using Gaussian Kernel

$$
\sigma^{2}=0.5
$$

$$
\sigma^{2}=1
$$

$$
\sigma^{2}=3
$$

lower bias,
higher variance

higher bias, lower variance

The Kernel Trick

"Given an algorithm which is formulated in terms of a positive definite kernel K_{1}, one can construct an alternative algorithm by replacing K_{1} with another positive definite kernel K_{2} "
$>$ SVMs can use the kernel trick

Incorporating Kernels into SVM

$$
\begin{gathered}
\left.\left.J(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\right\rangle \mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \\
J(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
h(\mathbf{x})=\operatorname{sign}\left(\sum_{i \in \mathcal{S V}} \alpha_{i} y_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle+b\right)
\end{gathered}
$$

A Few Good Kernels...

- Linear Kernel

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle
$$

- Polynomial kernel $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+c\right)^{d}$
$-\mathrm{c} \geq 0$ trades off influence of lower order terms
- Gaussian kernel

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid kernel

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\tanh \left(\alpha \mathbf{x}_{i}^{\top} \mathbf{x}_{j}+c\right)
$$

Many more...

- Cosine similarity kernel
- Chi-squared kernel
- String/tree/graph/wavelet/etc kernels

Practical Advice for Applying SVMs

- Use SVM software package to solve for parameters
- e.g., SVMlight, libsvm, cvx (fast!), etc.
- Need to specify:
- Choice of parameter C
- Choice of kernel function
- Associated kernel parameters

$$
\begin{aligned}
\text { e.g., } K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\left(\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+c\right)^{d} \\
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

SVMs vs Logistic Regression (Advice from Andrew Ng)

$\mathrm{n}=$ \# training examples $\mathrm{d}=$ \# features
If d is large (relative to n) (e.g., $d>n$ with $d=10,000, n=10-1,000$)

- Use logistic regression or SVM with a linear kernel

If d is small (up to 1,000), n is intermediate (up to 10,000)

- Use SVM with Gaussian kernel

If d is small (up to 1,000), n is large $(50,000+$)

- Create/add more features, then use logistic regression or SVM without a kernel

Neural networks likely to work well for most of these settings, but may be slower to train

Conclusion

- SVMs find optimal linear separator
- The kernel trick makes SVMs learn non-linear decision surfaces
- Strength of SVMs:
- Good theoretical and empirical performance
- Supports many types of kernels
- Disadvantages of SVMs:
- "Slow" to train/predict for huge data sets (but relatively fast!)
- Need to choose the kernel (and tune its parameters)

