
Support Vector Machines 
& Kernels

Doing really well with linear decision surfaces

Adapted from slides by Tim Oates

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton’s slides and 
grateful acknowledgement to the many others who made their course materials freely available online. Feel 
free to reuse or adapt these slides for your own academic purposes, provided that you include proper 
attribution. 



Understanding the Dual

In the solution, either:
• αi > 0 and the constraint is tight  (                         )  

Øpoint is a support vector

• αi = 0 
Øpoint is not a support vector
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SVM Dual Representation

The decision function is given by
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What if Data Are Not 
Linearly Separable?

• Cannot find θ that satisfies

• Introduce slack variables xi

• New problem:

min
✓

1

2

dX

j=1

✓2j

s.t. yi(✓
|xi) � 1 8i

yi(✓
|xi) � 1� ⇠i 8i

min
✓

1

2

dX

j=1

✓2j + C
X

i

⇠i

s.t. yi(✓
|xi) � 1� ⇠i 8i



Strengths of SVMs
• Good generalization in theory
• Good generalization in practice
• Work well with few training instances
• Find globally best model
• Efficient algorithms
• Amenable to the kernel trick …



What if Surface is Non-Linear?
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Image from http://www.atrandomresearch.com/iclass/



Kernel Methods

Making the Non-Linear Linear



When Linear Separators Fail

0 x x2



Mapping into a New Feature Space

• For example, with 

• Rather than run SVM on xi, run it on F(xi)
– Find non-linear separator in input space

• What if F(xi) is really big?
• Use kernels to compute it implicitly!

Image from http://web.engr.oregonstate.edu/ ~afern/classes/cs534/
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Kernels
• Find kernel K such that

• Computing                     should be efficient, much 
more so than computing F(xi) and F(xj) 

• Use                      in SVM algorithm rather than 

K(xi,xj) = h�(xi),�(xj)i

K(xi,xj) = h�(xi),�(xj)i

K(xi,xj) = h�(xi),�(xj)i hxi,xji



The Polynomial Kernel
Let                                and

Consider the following function:
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The Polynomial Kernel
• Given by
– F(x) contains all monomials of degree d

• Useful in visual pattern recognition
– Example:
• 16x16 pixel image
• 1010 monomials of degree 5
• Never explicitly compute F(x) !

• Variation:
– Adds all lower-order monomials (degrees 1,...,d )! 

K(xi,xj) = hxi,xjid

K(xi,xj) = (hxi,xji+ 1)d



The Gaussian Kernel
• Also called Radial Basis Function (RBF) kernel

– Has value 1 when xi = xj

– Value falls off to 0 with increasing distance
– Note: Need to do feature scaling before using Gaussian Kernel
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The Kernel Trick

“Given an algorithm which is formulated 
in terms of a positive definite kernel K1, 
one can construct an alternative 
algorithm by replacing K1 with another 
positive definite kernel K2”

Ø SVMs can use the kernel trick



Incorporating Kernels into SVM
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A Few Good Kernels...
• Linear Kernel

• Polynomial kernel
– c ≥ 0 trades off influence of lower order terms

• Gaussian kernel

• Sigmoid kernel

Many more...
• Cosine similarity kernel
• Chi-squared kernel
• String/tree/graph/wavelet/etc kernels
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Practical Advice for Applying SVMs
• Use SVM software package to solve for parameters
– e.g., SVMlight, libsvm, cvx (fast!), etc.

• Need to specify:
– Choice of parameter C
– Choice of kernel function

• Associated kernel parameters

e.g.,
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SVMs vs Logistic Regression
(Advice from Andrew Ng)

n = # training examples      d = # features

If d is large (relative to n)   (e.g., d > n with d = 10,000, n = 10-1,000)

• Use logistic regression or SVM with a linear kernel

If d is small (up to 1,000), n is intermediate (up to 10,000)
• Use SVM with Gaussian kernel

If d is small (up to 1,000), n is large (50,000+)
• Create/add more features, then use logistic regression or SVM 

without a kernel

Neural networks likely to work well for most of these 
settings, but may be slower to train

18Based on slide by Andrew Ng



Conclusion
• SVMs find optimal linear separator
• The kernel trick makes SVMs learn non-linear 

decision surfaces

• Strength of SVMs:
– Good theoretical and empirical performance
– Supports many types of kernels

• Disadvantages of SVMs:
– “Slow” to train/predict for huge data sets (but relatively fast!)

– Need to choose the kernel (and tune its parameters)


