

Support Vector Machines \& Kernels

Doing really well with linear decision surfaces

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton's slides and grateful acknowledgement to the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Last Time: SVMs, Maximizing Margin

The SVM problem (assuming data is linearly separable):

$$
\begin{aligned}
\min _{\boldsymbol{\theta}} & \frac{1}{2} \sum_{j=1}^{d} \theta_{j}^{2} \\
\text { s.t. } & y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right) \geq 1 \quad \forall i
\end{aligned}
$$

Maximum Margin Hyperplane

Vector Inner Product

$$
\begin{gathered}
u=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
\|\mathbf{u}\|_{2}=\operatorname{length}(\mathbf{u}) \in \mathbb{R} \\
=\sqrt{u_{1}^{2}+u_{2}^{2}}
\end{gathered}
$$

$$
\mathbf{u}^{\top} \mathbf{v}=\mathbf{v}^{\top} \mathbf{u}
$$

$$
=u_{1} v_{1}+u_{2} v_{2}
$$

$$
=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2} \cos \theta
$$

$$
=p\|\mathbf{u}\|_{2} \quad \text { where } p=\|\mathbf{v}\|_{2} \cos \theta
$$

Understanding the Hyperplane

$\min _{\boldsymbol{\theta}} \frac{1}{2} \sum_{j=1}^{d} \theta_{j}^{2}$
s.t. $\boldsymbol{\theta}^{\top} \mathbf{x}_{i} \geq 1 \quad$ if $y_{i}=1$
$\boldsymbol{\theta}^{\top} \mathbf{x}_{i} \leq-1 \quad$ if $y_{i}=-1$

Assume $\theta_{0}=0$ so that the hyperplane is centered at the origin, and that $\mathrm{d}=2$

$$
\begin{aligned}
\boldsymbol{\theta}^{\top} \mathbf{x} & =\|\boldsymbol{\theta}\|_{2} \underbrace{\|\mathbf{x}\|_{2} \cos \theta}_{p} \\
& =p\|\boldsymbol{\theta}\|_{2}
\end{aligned}
$$

Maximizing the Margin

$$
\min _{\boldsymbol{\theta}} \frac{1}{2} \sum_{j=1}^{d} \theta_{j}^{2}
$$

s.t. $\boldsymbol{\theta}^{\top} \mathbf{x}_{i} \geq 1 \quad$ if $y_{i}=1$

$$
\boldsymbol{\theta}^{\boldsymbol{\top}} \mathbf{x}_{i} \leq-1 \text { if } y_{i}=-1
$$

Assume $\theta_{0}=0$ so that the hyperplane is centered at the origin, and that $d=2$

Let p_{i} be the projection of x_{i} onto the vector $\boldsymbol{\theta}$

Since p is small, therefore $\|\boldsymbol{\theta}\|_{2}$ must be large to have $p\|\boldsymbol{\theta}\|_{2} \geq 1$ (or ≤-1)

Since p is larger, $\|\boldsymbol{\theta}\|_{2}$ can be smaller and still satisfy $\quad p\|\boldsymbol{\theta}\|_{2} \geq 1$ (or ≤-1)

Support Vectors

Size of the Margin

For the support vectors, we have $p\|\boldsymbol{\theta}\|_{2}= \pm 1$

- p is the length of the projection of the SVs onto $\boldsymbol{\theta}$

Therefore,

$$
p=\frac{1}{\|\boldsymbol{\theta}\|_{2}}
$$

$$
\operatorname{margin}=2 p=\frac{2}{\|\boldsymbol{\theta}\|_{2}}
$$

The SVM Dual Problem

The primal SVM problem was given as

$$
\begin{aligned}
\min _{\boldsymbol{\theta}} & \frac{1}{2} \sum_{j=1}^{d} \theta_{j}^{2} \\
\text { s.t. } & y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right) \geq 1 \quad \forall i
\end{aligned}
$$

Can solve it more efficiently by taking the Lagrangian dual

- Duality is a common idea in optimization
- It transforms a difficult optimization problem into a simpler one
- Key idea: introduce slack variables α_{i} for each constraint
$-\alpha_{i}$ indicates how important a particular constraint is to the solution

The SVM Dual Problem

- The Lagrangian is given by

$$
\begin{gathered}
L(\boldsymbol{\theta}, \boldsymbol{\alpha})=\frac{1}{2} \sum_{j=1}^{d} \theta_{j}^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i} \boldsymbol{\theta}^{\top} \mathbf{x}-1\right) \\
\text { s.t. } \alpha_{i} \geq 0 \quad \forall i
\end{gathered}
$$

- We must minimize over $\boldsymbol{\theta}$ and maximize over $\boldsymbol{\alpha}$
- At optimal solution, partials w.r.t $\boldsymbol{\theta}$'s are 0

Solve by a bunch of algebra and calculus ... and we obtain ...

SVM Dual Representation

Maximize $J(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$

$$
\begin{array}{ll}
\text { s.t. } & \alpha_{i} \geq 0 \quad \forall i \\
\qquad \sum_{i} \alpha_{i} y_{i}=0
\end{array}
$$

The decision function is given by

$$
h(\mathbf{x})=\operatorname{sign}\left(\sum_{i \in \mathcal{S} \mathcal{V}} \alpha_{i} y_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle+b\right)
$$

$$
\text { where } b=\frac{1}{|\mathcal{S V}|} \sum_{i \in \mathcal{S V}}\left(y_{i}-\sum_{j \in \mathcal{S V}} \alpha_{j} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle\right)
$$

Understanding the Dual

Maximize $\quad J(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$

$$
\text { s.t. } \alpha_{i} \geq 0 \quad \forall i
$$

$$
\sum \alpha_{i} y_{i}=0
$$

Constraint weights (α_{i} 's) cannot be negative

Understanding the Dual

$\begin{aligned} \text { Maximize } J(\boldsymbol{\alpha})= & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \\ \text { s.t. } & \alpha_{i} \geq 0 \quad \forall i \\ & \sum \alpha_{i}\end{aligned}$
Points with different labels increase the sum
Points with same label
Measures the similarity between points decrease the sum

Intuitively, we should be more careful around points near the margin

Understanding the Dual

Maximize $J(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$

$$
\begin{aligned}
& \text { s.t. } \alpha_{i} \geq 0 \quad \forall i \\
& \qquad \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

In the solution, either:

- $\boldsymbol{\alpha}_{\mathrm{i}}>0$ and the constraint is tight $\left(y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right)=1\right)$
$>$ point is a support vector
- $\alpha_{i}=0$
$>$ point is not a support vector

Deploying the Solution

Given the optimal solution $\boldsymbol{\alpha}^{*}$, optimal weights are

$$
\boldsymbol{\theta}^{\star}=\sum_{i \in S V s} \alpha_{i}^{\star} y_{i} \mathbf{x}_{i}
$$

What if Data Are Not Linearly Separable?

- Cannot find $\boldsymbol{\theta}$ that satisfies $y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right) \geq 1 \quad \forall i$
- Introduce slack variables ξ_{i}

$$
y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right) \geq 1-\xi_{i} \quad \forall i
$$

- New problem:

$$
\begin{aligned}
\min _{\boldsymbol{\theta}} & \frac{1}{2} \sum_{j=1}^{d} \theta_{j}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & y_{i}\left(\boldsymbol{\theta}^{\top} \mathbf{x}_{i}\right) \geq 1-\xi_{i} \quad \forall i
\end{aligned}
$$

Strengths of SVMs

- Good generalization in theory
- Good generalization in practice
- Work well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick ...

