

Support Vector Machines & Kernels

Doing *really* well with linear decision surfaces

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton's slides and grateful acknowledgement to the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Adapted from slides by Tim Oates

Strengths of SVMs

- Good generalization
 - in theory
 - in practice
- Works well with few training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick

Minor Notation Change

To better match notation used in SVMs ...and to make matrix formulas simpler

We will drop using superscripts for the ith instance

Linear Separators

• Training instances

$$\mathbf{x} \in \mathbb{R}^{d+1}, x_0 = 1$$
$$y \in \{-1, 1\}$$

- Model parameters $oldsymbol{ heta} \in \mathbb{R}^{d+1}$
- Hyperplane

$$\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x} = \langle \boldsymbol{\theta}, \mathbf{x} \rangle = 0$$

Decision function

 $h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\intercal} \mathbf{x}) = \operatorname{sign}(\langle \boldsymbol{\theta}, \mathbf{x} \rangle)$

 $\frac{\text{Recall:}}{\text{Inner (dot) product:}}$ $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{\mathsf{T}} \mathbf{v}$ $= \sum_{i} u_{i} v_{i}$

A "Good" Separator

Noise in the Observations

Ruling Out Some Separators

Lots of Noise

Only One Separator Remains

Maximizing the Margin

"Fat" Separators

"Fat" Separators

Why Maximize Margin

Increasing margin reduces *capacity*

• i.e., fewer possible models

Remember Lesson from Learning Theory:

- If the following holds:
 - H is sufficiently constrained in size
 - and/or the size of the training data set n is large,

then low training error is likely to be evidence of low generalization error

Alternative View of Logistic Regression

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}}} \qquad \qquad h_{\boldsymbol{\theta}}(\mathbf{x}) = g(z) \qquad \qquad z = \boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}$$

If y = 1, we want $h_{\theta}(\mathbf{x}) \approx 1$, $\theta^{\mathsf{T}} \mathbf{x} \gg 0$ If y = 0, we want $h_{\theta}(\mathbf{x}) \approx 0$, $\theta^{\mathsf{T}} \mathbf{x} \ll 0$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} [y_i \log h_{\boldsymbol{\theta}}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\mathbf{x}_i))]$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \qquad \cot_1(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}_i) \qquad \cot_0(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}_i)$$

Based on slide by Andrew Ng

Alternative View of Logistic Regression

Cost of example: $-y_i \log h_{\theta}(\mathbf{x}_i) - (1 - y_i) \log (1 - h_{\theta}(\mathbf{x}_i))$ $h_{\theta}(\mathbf{x}) = \frac{1}{1 + e^{-\theta^{\mathsf{T}}\mathbf{x}}} \quad z = \theta^{\mathsf{T}}\mathbf{x}$

Support Vector Machine

Support Vector Machine

