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Last Time: Bias-Variance Tradeoff
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A Way to Choose the Best Model
• It would be really helpful if we could get a guarantee 

of the following form: 

n = size of training set
h = measure of the model complexity
p = the probability that this bound fails

• Then we could choose the model complexity that 
minimizes the bound on the test error

testingError  trainingError + f(n, h, p)

We need p to allow for really unlucky 
training/test sets
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A Measure of Model Complexity
• Suppose that we pick n data points and assign labels 

of + or – to them at random
• If our model class (e.g., a decision tree, polynomial 

regression of a particular degree, etc.) can learn any
association of labels with data, it is too powerful!
More power:  can model more complex functions, but may overfit
Less power:  won’t overfit, but limited in what it can represent

• Idea: characterize the power of a model class by 
asking how many data points it can perfectly learn all 
possible assignments of labels
– This number of data points is called the Vapnik-Chervonenkis

(VC) dimension
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VC Dimension
• A measure of the power of a particular class of models
– It does not depend on the choice of training set

• The VC dimension of a model class is the maximum 
number of points that can be arranged so that the 
class of models can shatter those points
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Definition: a model class can shatter a set of points

if for every possible labeling over those points, there 
exists a model in that class that obtains zero training error     

x(1),x(2), . . . ,x(r)
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An Example of VC Dimension
• Suppose our model class is a hyperplane
• Consider all labelings over three points in 

• In       , we can find a hyperplane (i.e., a line) to capture any 
labeling of 3 points. A 2D hyperplane shatters 3 points
R2
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An Example of VC Dimension
• But, a 2D hyperplane cannot deal with some 

labelings of four points:

• Therefore, a 2D hyperplane cannot shatter 4 points
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Connect all pairs of points; 
two lines will always cross

Can’t separate points if the pairs 
that cross are the same class



Some Examples of VC Dimension
• The VC dimension of a 2D hyperplane is 3.
– In d dimensions it is d+1

• It’s just a coincidence that the VC dimension of a hyperplane is 
almost identical to the # parameters needed to define a hyperplane

• A sine wave has infinite VC dimension and only 2 parameters!
– By choosing the phase & period carefully we can shatter any 

random set of 1D data points (except for nasty special cases)
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h(x) = a sin(bx)
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Assumptions
• Given some model class (which defines the hypothesis space H)

• Assume all training points were drawn i.i.d from 
distribution D

• Assume all future test points will be drawn from D

Definitions:
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R(✓) = testError(✓) = E
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probability of misclassification“official” notation notation 
we’ll use
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A Probabilistic Guarantee of 
Generalization Performance

Vapnik showed that with probability (1 –η):

n = size of training set
h = VC dimension of model class
η= the probability that this bound fails

• So, we should pick the model with the complexity 
that minimizes this bound 
– Actually, this is only sensible if we think the bound is fairly 

tight, which it usually isn’t 
– The theory provides insight, but in practice we still need 

some witchcraft
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testError(✓)  trainError(✓) +

r
h(log(2n/h) + 1)� log(⌘/4)

n
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Take Away Lesson
Suppose we find a model with a low training error...
• If hypothesis space H is very big (relative to the size 

of the training data n), then we most likely overfit

• If the following holds:
– H is sufficiently constrained in size (low VC dimension) 
– and/or the size of the training data set n is large, 
then low training error is likely to be evidence of low 
generalization error
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