
Logistic Regression

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton’s slides and
grateful acknowledgement to the many others who made their course materials freely available online. Feel
free to reuse or adapt these slides for your own academic purposes, provided that you include proper
attribution.

Classification Based on Probability
• Instead of just predicting the class, give the probability

of the instance being that class
– i.e., learn

• Comparison to perceptron:
– Perceptron doesn’t produce probability estimate

2

p(y | x)

Logistic Regression
• Takes a probabilistic approach to learning

discriminative functions (i.e., a classifier)

• should give
– Want

• Logistic regression model:

3

h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

0 h✓(x) 1

g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx

Logistic / Sigmoid Function

h✓(x) p(y = 1 | x;✓)

Interpretation of Hypothesis Output

4

= estimated

à Tell patient that 70% chance of tumor being malignant

Example: Cancer diagnosis from tumor size

h✓(x) p(y = 1 | x;✓)

x =

x0

x1

�
=

1

tumorSize

�

h✓(x) = 0.7

p(y = 0 | x;✓) + p(y = 1 | x;✓) = 1Note that:

Based on example by Andrew Ng

Therefore, p(y = 0 | x;✓) = 1� p(y = 1 | x;✓)

Another Interpretation
• Equivalently, logistic regression assumes that

• In other words, logistic regression assumes that
the log odds is a linear function of

5

log
p(y = 1 | x;✓)
p(y = 0 | x;✓) = ✓0 + ✓1x1 + . . .+ ✓dxd

x

Side Note: the odds in favor of an event is the quantity
p / (1 − p), where p is the probability of the event

E.g., If I toss a fair dice, what are the odds that I will have a 6?

odds of y = 1

Based on slide by Xiaoli Fern

Logistic Regression

• Assume a threshold and...
– Predict y = 1 if

– Predict y = 0 if

6

h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

g(z) =
1

1 + e�z

h✓(x) � 0.5

h✓(x) < 0.5

y = 1

y = 0

✓

Based on slide by Andrew Ng

should be large negative
values for negative instances

h✓(x) = g (✓|x) should be large positive
values for positive instances

h✓(x) = g (✓|x)

Non-Linear Decision Boundary
• Can apply basis function expansion to

features, same as with linear regression

7

x =

2

4
1
x1

x2

3

5 !

2

6666666666666664

1
x1

x2

x1x2

x2
1

x2
2

x2
1x2

x1x2
2

...

3

7777777777777775

Logistic Regression
(continued)

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton’s slides and
grateful acknowledgement to the many others who made their course materials freely available online. Feel
free to reuse or adapt these slides for your own academic purposes, provided that you include proper
attribution.

Last Time: Logistic Regression

• Given

where

• Model:

9

h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

n⇣
x(1), y(1)

⌘
,
⇣
x(2), y(2)

⌘
, . . . ,

⇣
x(n), y(n)

⌘o

x(i) 2 Rd, y(i) 2 {0, 1}

Logistic Regression Objective Function
• Shouldn't use squared loss as in linear

regression:

– Using the logistic regression model

results in a non-convex optimization

10

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

h✓(x) =
1

1 + e�✓Tx

Deriving the Cost Function via MLE
• Likelihood of data is given by:

• So, looking for the θ that maximizes the
likelihood

• Can take the log without changing the
solution:

11

l(✓) =
nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax
✓

l(✓) = argmax
✓

nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax
✓

log
nY

i=1

p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

✓MLE = argmax
✓

log
nY

i=1

p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

Deriving the Cost Function via MLE

12

• Expand as follows:

• Substitute in model, and take negative to yield

✓MLE = argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i);✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i);✓)

⌘i

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

Logistic regression objective:

min
✓

J(✓)

✓MLE = argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i);✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i);✓)

⌘i

Intuition Behind the Objective

• Cost of a single instance:

• Can re-write objective function as

13

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

J(✓) =
nX

i=1

cost
⇣
h✓(x

(i)), y(i)
⌘

Intuition Behind the Objective

14

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

Aside: Recall the plot of log(z)

Intuition Behind the Objective

If y = 1
• Cost = 0 if prediction is correct
• As

• Captures intuition that larger
mistakes should get larger
penalties
– e.g., predict , but y = 1

15

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

h✓(x) ! 0, cost ! 1

h✓(x) = 0

Based on example by Andrew Ng

If y = 1

10

cost

h✓(x) = 0

Intuition Behind the Objective

16

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

If y = 0

10

cost

If y = 1

If y = 0
• Cost = 0 if prediction is

correct
• As

• Captures intuition that
larger mistakes should get
larger penalties

(1� h✓(x)) ! 0, cost ! 1

Based on example by Andrew Ng

h✓(x) = 0

Regularized Logistic Regression

• We can regularize logistic regression exactly as
before:

17

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

Jregularized(✓) = J(✓) + �
dX

j=1

✓2j

= J(✓) + �k✓[1:d]k22

Gradient Descent for Logistic Regression

18

• Initialize
• Repeat until convergence

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous update

for j = 0 ... d

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

+ �k✓[1:d]k22

Want min
✓

J(✓)

Use the natural logarithm (ln = loge) to cancel with the exp() in h✓(x) =
1

1 + e�✓Tx

✓0 ✓0 � ↵
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

✓j ✓j � ↵
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j � �✓j

Gradient Descent for Logistic Regression

19

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

+ �k✓[1:d]k22

Want min
✓

J(✓)

• Initialize
• Repeat until convergence

✓
(simultaneous update for j = 0 ... d)

✓j ✓j � ↵

"
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j �

�

n
✓j

#

✓0 ✓0 � ↵
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

✓j ✓j � ↵
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j � �✓j

Gradient Descent for Logistic Regression

20

• Initialize
• Repeat until convergence

✓
(simultaneous update for j = 0 ... d)

This looks IDENTICAL to linear regression!!!
• Ignoring the 1/n constant
• However, the form of the model is very different:

h✓(x) =
1

1 + e�✓Tx

✓j ✓j � ↵

"
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j �

�

n
✓j

#

