

Logistic Regression

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton's slides and grateful acknowledgement to the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Classification Based on Probability

- Instead of just predicting the class, give the probability of the instance being that class
- i.e., learn $p(y \mid \boldsymbol{x})$
- Comparison to perceptron:
- Perceptron doesn't produce probability estimate

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\boldsymbol{\theta}}(\boldsymbol{x})$ should give $p(y=1 \mid \boldsymbol{x} ; \boldsymbol{\theta})$
- Want $0 \leq h_{\boldsymbol{\theta}}(\boldsymbol{x}) \leq 1$
- Logistic regression model:

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x}) & =g\left(\boldsymbol{\theta}^{\top} \boldsymbol{x}\right) \\
g(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{1}{1+e^{-\boldsymbol{\theta}^{\top} \boldsymbol{x}}}
$$

Interpretation of Hypothesis Output

$h_{\boldsymbol{\theta}}(\boldsymbol{x})=$ estimated $p(y=1 \mid \boldsymbol{x} ; \boldsymbol{\theta})$
Example: Cancer diagnosis from tumor size

$$
\begin{aligned}
& \boldsymbol{x}=\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\text { tumorSize }
\end{array}\right] \\
& h_{\boldsymbol{\theta}}(\boldsymbol{x})=0.7
\end{aligned}
$$

\rightarrow Tell patient that 70% chance of tumor being malignant

Note that: $p(y=0 \mid \boldsymbol{x} ; \boldsymbol{\theta})+p(y=1 \mid \boldsymbol{x} ; \boldsymbol{\theta})=1$
Therefore, $p(y=0 \mid \boldsymbol{x} ; \boldsymbol{\theta})=1-p(y=1 \mid \boldsymbol{x} ; \boldsymbol{\theta})$

Another Interpretation

- Equivalently, logistic regression assumes that

$$
\log \frac{p(y=1 \mid \boldsymbol{x} ; \boldsymbol{\theta})}{p(y=0 \mid \boldsymbol{x} ; \boldsymbol{\theta})}=\theta_{0}+\theta_{1} x_{1}+\ldots+\theta_{d} x_{d}
$$

Side Note: the odds in favor of an event is the quantity $p /(1-p)$, where p is the probability of the event
E.g., If I toss a fair dice, what are the odds that I will have a 6 ?

- In other words, logistic regression assumes that the log odds is a linear function of \boldsymbol{x}

Logistic Regression

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x})= & g\left(\boldsymbol{\theta}^{\top} \boldsymbol{x}\right) \\
g(z)= & \frac{1}{1+e^{-z}} \\
& \begin{array}{l}
\boldsymbol{\theta}^{\top} \boldsymbol{x} \text { should be large negative } \\
\text { values for negative instances }
\end{array}
\end{aligned}
$$

- Assume a threshold and...
- Predict $\mathrm{y}=1$ if $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \geq 0.5$
- Predict $\mathrm{y}=0$ if $h_{\boldsymbol{\theta}}(\boldsymbol{x})<0.5$

Non-Linear Decision Boundary

- Can apply basis function expansion to features, same as with linear regression

$$
\boldsymbol{x}=\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
x_{1} x_{2} \\
x_{1}^{2} \\
x_{2}^{2} \\
x_{1}^{2} x_{2} \\
x_{1} x_{2}^{2} \\
\vdots
\end{array}\right]
$$

Logistic Regression (continued)

These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton's slides and grateful acknowledgement to the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

Last Time: Logistic Regression

- Given $\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right),\left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots,\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}$
where $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}, y^{(i)} \in\{0,1\}$
- Model: $h_{\boldsymbol{\theta}}(\boldsymbol{x})=g\left(\boldsymbol{\theta}^{\boldsymbol{\top}} \boldsymbol{x}\right)$

$$
g(z)=\frac{1}{1+e^{-z}}
$$

Logistic Regression Objective Function

- Shouldn't use squared loss as in linear regression:

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

- Using the logistic regression model

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{1}{1+e^{-\boldsymbol{\theta}^{\top} \boldsymbol{x}}}
$$

results in a non-convex optimization

Deriving the Cost Function via MLE

- Likelihood of data is given by: $l(\boldsymbol{\theta})=\prod_{i=1}^{n} p\left(y^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)$
- So, looking for the $\boldsymbol{\theta}$ that maximizes the likelihood

$$
\boldsymbol{\theta}_{\mathrm{MLE}}=\arg \max _{\boldsymbol{\theta}} l(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{n} p\left(y^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)
$$

- Can take the log without changing the solution:

$$
\begin{aligned}
\boldsymbol{\theta}_{\mathrm{MLE}} & =\arg \max _{\boldsymbol{\theta}} \log \prod_{i=1} p\left(y^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right) \\
& =\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p\left(y^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)
\end{aligned}
$$

Deriving the Cost Function via MLE

- Expand as follows:

$$
\begin{aligned}
\boldsymbol{\theta}_{\mathrm{MLE}} & =\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p\left(y^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right) \\
& =\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{n}\left[y^{(i)} \log p\left(y^{(i)}=1 \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)+\left(1-y^{(i)}\right) \log \left(1-p\left(y^{(i)}=1 \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)\right)\right]
\end{aligned}
$$

- Substitute in model, and take negative to yield

Logistic regression objective:

$$
\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

$$
J(\boldsymbol{\theta})=-\sum_{i=1}^{n}\left[y^{(i)} \log h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right)\right]
$$

Intuition Behind the Objective

$J(\boldsymbol{\theta})=-\sum_{i=1}^{n}\left[y^{(i)} \log h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right)\right]$

- Cost of a single instance:
$\operatorname{cost}\left(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y\right)=\left\{\begin{aligned}-\log \left(h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) & \text { if } y=1 \\ -\log \left(1-h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) & \text { if } y=0\end{aligned}\right.$
- Can re-write objective function as

$$
J(\boldsymbol{\theta})=\sum_{i=1}^{n} \operatorname{cost}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right), y^{(i)}\right)
$$

Intuition Behind the Objective

$\operatorname{cost}\left(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y\right)=\left\{\begin{aligned}-\log \left(h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) & \text { if } y=1 \\ -\log \left(1-h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) & \text { if } y=0\end{aligned}\right.$

Aside: Recall the plot of $\log (z)$

Intuition Behind the Objective

$$
\operatorname{cost}\left(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y\right)=\left\{\begin{aligned}
-\log \left(h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) & \text { if } y=1 \\
-\log \left(1-h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) & \text { if } y=0
\end{aligned}\right.
$$

If $y=1$

- Cost $=0$ if prediction is correct
- As $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \rightarrow 0$, cost $\rightarrow \infty$
- Captures intuition that larger mistakes should get larger penalties
- e.g., predict $h_{\boldsymbol{\theta}}(\boldsymbol{x})=0$, but $\mathrm{y}=1$

Intuition Behind the Objective

$$
\operatorname{cost}\left(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y\right)=\left\{\begin{aligned}
-\log \left(h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) & \text { if } y=1 \\
\hline-\log \left(1-h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) & \text { if } y=0
\end{aligned}\right.
$$

$$
\text { If } y=0
$$

- Cost $=0$ if prediction is correct
- As $\left(1-h_{\boldsymbol{\theta}}(\boldsymbol{x})\right) \rightarrow 0$, cost $\rightarrow \infty$
- Captures intuition that larger mistakes should get larger penalties

Regularized Logistic Regression

$$
J(\boldsymbol{\theta})=-\sum_{i=1}^{n}\left[y^{(i)} \log h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right)\right]
$$

- We can regularize logistic regression exactly as before:

$$
\begin{aligned}
J_{\text {regularized }}(\boldsymbol{\theta}) & =J(\boldsymbol{\theta})+\lambda \sum_{j=1}^{d} \theta_{j}^{2} \\
& =J(\boldsymbol{\theta})+\lambda\left\|\boldsymbol{\theta}_{[1: d]}\right\|_{2}^{2}
\end{aligned}
$$

Gradient Descent for Logistic Regression

$$
J_{\mathrm{reg}}(\boldsymbol{\theta})=-\sum_{i=1}^{n}\left[y^{(i)} \log h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right]+\lambda\left\|\boldsymbol{\theta}_{[1: A d}\right\|_{2}^{2}\right.
$$

Want $\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

- Initialize $\boldsymbol{\theta}$
- Repeat until convergence

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})
$$

simultaneous update for $\mathrm{j}=0$... d

Use the natural logarithm $\left(\ln =\log _{e}\right)$ to cancel with the $\exp ()$ in $h_{\boldsymbol{\theta}}(\boldsymbol{x})$

Gradient Descent for Logistic Regression

$$
J_{\mathrm{reg}}(\boldsymbol{\theta})=-\sum_{i=1}^{n}\left[y^{(i)} \log h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right]+\lambda\left\|\boldsymbol{\theta}_{[1: A]}\right\|_{2}^{2}\right.
$$

Want $\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

- Initialize θ
- Repeat until convergence
(simultaneous update for $\mathrm{j}=0$... d)

$$
\begin{aligned}
& \theta_{0} \leftarrow \theta_{0}-\alpha \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) \\
& \theta_{j} \leftarrow \theta_{j}-\alpha\left[\sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}-\frac{\lambda}{n} \theta_{j}\right]
\end{aligned}
$$

Gradient Descent for Logistic Regression

- Initialize θ
- Repeat until convergence (simultaneous update for $\mathrm{j}=0 \ldots \mathrm{~d}$)

$$
\begin{aligned}
& \theta_{0} \leftarrow \theta_{0}-\alpha \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) \\
& \theta_{j} \leftarrow \theta_{j}-\alpha\left[\sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}-\frac{\lambda}{n} \theta_{j}\right]
\end{aligned}
$$

This looks IDENTICAL to linear regression!!!

- Ignoring the $1 / \mathrm{n}$ constant
- However, the form of the model is very different:

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{1}{1+e^{-\boldsymbol{\theta}^{\top} \boldsymbol{x}}}
$$

