Decision Trees:

Overfitting

CSE 446: Machine Learning
Emily Fox
University of Washington
January 30, 2017

Decision tree recap

For each leaf node, set $\hat{y} = \text{majority value}$
Greedy decision tree learning

• **Step 1:** Start with an empty tree

• **Step 2:** Select a feature to split data

• For each split of the tree:

 • **Step 3:** If nothing more to, make predictions

 • **Step 4:** Otherwise, go to **Step 2** & continue (recurse) on this split

Scoring a loan application

\[x_i = (\text{Credit} = \text{poor}, \text{Income} = \text{high}, \text{Term} = 5 \text{ years}) \]

\[y_i = \text{Safe} \]
Decision trees vs logistic regression:
Example

Logistic regression

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>Weight Learned</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0(x)$</td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>$h_1(x)$</td>
<td>$x[1]$</td>
<td>1.12</td>
</tr>
<tr>
<td>$h_2(x)$</td>
<td>$x[2]$</td>
<td>-1.07</td>
</tr>
</tbody>
</table>
Depth 1: Split on $x[1]$

- $x[1] < -0.07$
 - 13 3
 - 4 11

Depth 2

- $x[1] < -0.07$
 - 13 3

- $x[1] >= -0.07$
 - 4 11

- $x[2] < 1.55$
 - 7 0

- $x[2] >= 1.55$
 - 3 0
Threshold split caveat

For threshold splits, same feature can be used multiple times

Decision boundaries

Depth 1
Depth 2
Depth 10
Comparing decision boundaries

Logistic Regression
- Degree 1 features
- Degree 2 features
- Degree 6 features

Decision Tree
- Depth 1
- Depth 3
- Depth 10

Predicting probabilities with decision trees

Loan status:
- Safe
- Risky

Root
18 12

Credit?
- excellent
 - 9 2
 - Safe
- fair
 - 6 9
 - Risky
- poor
 - 3 1
 - Safe

\[P(y = \text{Safe} \mid x) = \frac{3}{3 + 1} = 0.75 \]
Depth 1 probabilities

Y values
- +

root

X1

X1 < -0.07 13 3
X1 >= -0.07 4 11

Depth 2 probabilities

Y values
- +

root

X1

X1 < -0.07 13 3
X1 >= -0.07 4 11

X2

X1 < -1.66 7 0
X1 >= -1.66 6 3
X2 < 1.55 1 11
X2 >= 1.55 3 0
Comparison with logistic regression

Overfitting in decision trees
What happens when we increase depth?

Training error reduces with depth

<table>
<thead>
<tr>
<th>Tree depth</th>
<th>depth = 1</th>
<th>depth = 2</th>
<th>depth = 3</th>
<th>depth = 5</th>
<th>depth = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training error</td>
<td>0.22</td>
<td>0.13</td>
<td>0.10</td>
<td>0.03</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Decision boundary

Two approaches to picking simpler trees

1. **Early Stopping:**
 Stop the learning algorithm *before* tree becomes too complex

2. **Pruning:**
 Simplify the tree *after* the learning algorithm terminates
Technique 1: Early stopping

- Stopping conditions (recap):
 1. All examples have the same target value
 2. No more features to split on

- Early stopping conditions:
 1. Limit tree depth (choose max_depth using validation set)
 2. Do not consider splits that do not cause a sufficient decrease in classification error
 3. Do not split an intermediate node which contains too few data points

Challenge with early stopping condition 1

Hard to know exactly when to stop

Also, might want some branches of tree to go deeper while others remain shallow
Early stopping condition 2: Pros and Cons

• Pros:
 – A reasonable heuristic for early stopping to avoid useless splits

• Cons:
 – Too short sighted: We may miss out on “good” splits may occur right after “useless” splits
 – Saw this with “xor” example

Two approaches to picking simpler trees

1. **Early Stopping:**
 Stop the learning algorithm before tree becomes too complex

2. **Pruning:**
 Simplify the tree after the learning algorithm terminates
 Complements early stopping
Pruning: Intuition
Train a complex tree, simplify later

Pruning motivation

Classification Error

True Error

Simple tree

Complex tree

Simplify after tree is built

Don’t stop too early

Tree depth
Scoring trees: Desired total quality format

Want to balance:

i. How well tree fits data
ii. Complexity of tree

Total cost = \text{(classification error)} + \text{measure of complexity}

Large # = bad fit to training data
Large # = likely to overfit

Simple measure of complexity of tree

\[L(T) = \# \text{ of leaf nodes} \]
Balance simplicity & predictive power

Too complex, risk of overfitting

Too simple, high classification error

Balancing fit and complexity

Total cost \(C(T) = \text{Error}(T) + \lambda L(T) \)

- If \(\lambda = 0 \):
- If \(\lambda = \infty \):
- If \(\lambda \) in between:
Tree pruning algorithm

Step 1: Consider a split

Tree T

- **Start**
 - **Credit?**
 - **fair**
 - **poor**
 - **Income?**
 - **high**
 - **low**

- **Term?**
 - **3 years**
 - **5 years**

Candidate for pruning

- **Safe**
- **Risky**

- **3 years**
- **5 years**
Step 2: Compute total cost $C(T)$ of split

$C(T) = \text{Error}(T) + \lambda \ L(T)$

$\lambda = 0.3$

Tree T

- **Credit?**
 - **excellent**: Safe
 - **poor**
 - **fair**
 - **Term?**
 - **3 years**: Risky
 - **5 years**: Safe
 - **Term?**
 - **3 years**: Risky
 - **5 years**: Safe
 - **Income?**
 - **high**
 - **Term?**
 - **3 years**: Risky
 - **5 years**: Safe
 - **low**
 - **Term?**
 - **3 years**: Risky
 - **5 years**: Safe

Tree T_{smaller}

- **Credit?**
 - **excellent**: Safe
 - **poor**
 - **fair**
 - **Term?**
 - **3 years**: Risky
 - **5 years**: Safe
 - **Term?**
 - **3 years**: Risky
 - **5 years**: Safe
 - **Income?**
 - **high**
 - **Term?**
 - **3 years**: Risky
 - **5 years**: Safe
 - **low**
 - **Term?**
 - **3 years**: Risky
 - **5 years**: Safe

Candidate for pruning

- Replace split by leaf node?
Prune if total cost is lower: $C(T_{\text{smaller}}) \leq C(T)$

Worse training error but lower overall cost

$\lambda = 0.3$

![Decision Tree](image)

$C(T) = \text{Error}(T) + \lambda \cdot \text{L}(T)$

Replace split by leaf node? YES!

Step 5: Repeat Steps 1-4 for every split

Decide if each split can be "pruned"
Summary of overfitting in decision trees

What you can do now...

• Identify when overfitting in decision trees
• Prevent overfitting with early stopping
 – Limit tree depth
 – Do not consider splits that do not reduce classification error
 – Do not split intermediate nodes with only few points
• Prevent overfitting by pruning complex trees
 – Use a total cost formula that balances classification error and tree complexity
 – Use total cost to merge potentially complex trees into simpler ones
Simple (weak) classifiers are good!

- Logistic regression w. simple features
- Shallow decision trees
- Decision stumps

Low variance. Learning is fast!

But high bias...
Finding a classifier that’s just right

Model complexity

Classification error

true error

train error

Weak learner → Need stronger learner

Option 1: add more features or depth
Option 2: ?????

Boosting question

“Can a set of weak learners be combined to create a stronger learner?” Kearns and Valiant (1988)

Yes! Schapire (1990)

Boosting

Amazing impact: • simple approach • widely used in industry • wins most Kaggle competitions
Ensemble classifier

A single classifier

Input: x

Income>$100K$?

Yes No

Safe Risky

Output: $\hat{y} = f(x)$
 - Either +1 or -1

Classifier
Ensemble methods: Each classifier “votes” on prediction

\[x_i = (\text{Income}=$120K, \text{Credit}=\text{Bad}, \text{Savings}=$50K, \text{Market}=\text{Good}) \]

\[f_1(x_i) = +1 \quad f_2(x_i) = -1 \quad f_3(x_i) = -1 \quad f_4(x_i) = +1 \]

\[F(x_i) = \text{sign}(w_1 f_1(x_i) + w_2 f_2(x_i) + w_3 f_3(x_i) + w_4 f_4(x_i)) \]
Prediction with ensemble

Ensemble classifier in general

- **Goal:**
 - Predict output y
 - Either $+1$ or -1
 - From input x
 - Learn ensemble model:
 - Classifiers: $f_1(x), f_2(x), \ldots, f_T(x)$
 - Coefficients: $\hat{w}_1, \hat{w}_2, \ldots, \hat{w}_T$
 - Prediction:
 $$\hat{y} = \text{sign} \left(\sum_{t=1}^{T} \hat{w}_t f_t(x) \right)$$
Training a classifier

Training data

Learn classifier

\(f(x) \)

Predict

\(\hat{y} = \text{sign}(f(x)) \)
Learning decision stump

<table>
<thead>
<tr>
<th>Credit</th>
<th>Income</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$130K</td>
<td>Safe</td>
</tr>
<tr>
<td>B</td>
<td>$80K</td>
<td>Risky</td>
</tr>
<tr>
<td>C</td>
<td>$110K</td>
<td>Risky</td>
</tr>
<tr>
<td>A</td>
<td>$110K</td>
<td>Safe</td>
</tr>
<tr>
<td>A</td>
<td>$90K</td>
<td>Safe</td>
</tr>
<tr>
<td>B</td>
<td>$120K</td>
<td>Safe</td>
</tr>
<tr>
<td>C</td>
<td>$30K</td>
<td>Risky</td>
</tr>
<tr>
<td>C</td>
<td>$60K</td>
<td>Risky</td>
</tr>
<tr>
<td>B</td>
<td>$95K</td>
<td>Safe</td>
</tr>
<tr>
<td>A</td>
<td>$60K</td>
<td>Safe</td>
</tr>
<tr>
<td>A</td>
<td>$98K</td>
<td>Safe</td>
</tr>
</tbody>
</table>

Income?

> $100K

| 3 | 1 |

ŷ = Safe

≤ $100K

| 4 | 3 |

ŷ = Safe

Boosting = Focus learning on “hard” points

Training data → Learn classifier → Predict ŷ = \text{sign}(f(x))

Evaluate

Boosting: focus next classifier on places where \(f(x) \) does less well

Learn where \(f(x) \) makes mistakes
Learning on weighted data:
More weight on “hard” or more important points

- Weighted dataset:
 - Each x_i, y_i weighted by α_i
 - More important point = higher weight α_i

- Learning:
 - Data point i counts as α_i data points
 - E.g., $\alpha_i = 2 \Rightarrow$ count point twice

Learning a decision stump on weighted data

<table>
<thead>
<tr>
<th>Credit</th>
<th>Income</th>
<th>y</th>
<th>Weight α</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$130K$</td>
<td>Safe</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>$80K$</td>
<td>Risky</td>
<td>1.5</td>
</tr>
<tr>
<td>C</td>
<td>$110K$</td>
<td>Risky</td>
<td>1.2</td>
</tr>
<tr>
<td>A</td>
<td>$110K$</td>
<td>Safe</td>
<td>0.8</td>
</tr>
<tr>
<td>A</td>
<td>$90K$</td>
<td>Safe</td>
<td>0.6</td>
</tr>
<tr>
<td>B</td>
<td>$120K$</td>
<td>Safe</td>
<td>0.7</td>
</tr>
<tr>
<td>C</td>
<td>$30K$</td>
<td>Risky</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>$60K$</td>
<td>Risky</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>$95K$</td>
<td>Safe</td>
<td>0.8</td>
</tr>
<tr>
<td>A</td>
<td>$60K$</td>
<td>Safe</td>
<td>0.7</td>
</tr>
<tr>
<td>A</td>
<td>$98K$</td>
<td>Safe</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Income? \Rightarrow

- $> \$100K$:
 - $\hat{y} = $ Safe
 - Weights: $2 \Rightarrow 1.2$
- $\leq \$100K$:
 - $\hat{y} = $ Risky
 - Weights: $3 \Rightarrow 6.5$

Increase weight α of harder/misclassified points
Learning from weighted data in general

- Usually, learning from weighted data
 - Data point \(i \) counts as \(\alpha_i \) data points

- E.g., gradient ascent for logistic regression:

\[
\begin{align*}
\text{Sum over data points} & \quad \text{Weigh each point by } \alpha_i \\
\mathbf{w}_j^{(t+1)} & \leftarrow \mathbf{w}_j^{(t)} + \eta \sum_{i=1}^{N} \mathbf{h}_j(x_i) (1[y_i = +1] - P(y = +1 | x_i, \mathbf{w}^{(t)}) \\
\end{align*}
\]

Boosting = Greedy learning ensembles from data

- Training data
- Weighted data
- Learn classifier & coefficient
- Predict \(\hat{y} = \text{sign}(\mathbf{\hat{w}}_1 f_1(x) + \mathbf{\hat{w}}_2 f_2(x)) \)
- Higher weight for points where \(f_1(x) \) is wrong
AdaBoost: learning ensemble

[Freund & Schapire 1999]

- Start with same weight for all points: $\alpha_i = 1/N$

- For $t = 1, ..., T$
 - Learn $f_t(x)$ with data weights α_i
 - Compute coefficient \hat{w}_t
 - Recompute weights α_i

- Final model predicts by:
 $$\hat{y} = \text{sign} \left(\sum_{t=1}^{T} \hat{w}_t f_t(x) \right)$$
Computing coefficient \hat{w}_t

AdaBoost: Computing coefficient \hat{w}_t of classifier $f_t(x)$

- $f_t(x)$ is good \Rightarrow f_t has low training error
- Measuring error in weighted data?
 - Just weighted # of misclassified points
Weighted classification error

Learned classifier

\(\hat{y} = + \)

Data point

(Sushi was great, \(\alpha = 1.2 \))

(weight of correct)

Mistake!

(weight of mistakes)

Hide label

- Total weight of mistakes:
- Total weight of all points:
- Weighted error measures fraction of weight of mistakes:

 \[
 \text{weighted_error} = \frac{\text{weight of mistakes}}{\text{total weight of all points}}.
 \]
- Best possible value is 0.0
AdaBoost: learning ensemble

- Start with same weight for all points: $\alpha_i = 1/N$

- For $t = 1,\ldots,T$
 - Learn $f_t(x)$ with data weights α_i
 - Compute coefficient \hat{w}_t
 - Recompute weights α_i

- Final model predicts by:
 $$\hat{y} = \text{sign} \left(\sum_{t=1}^{T} \hat{w}_t f_t(x) \right)$$
Recompute weights α_i

AdaBoost: Updating weights α_i based on where classifier $f_t(x)$ makes mistakes

- Did f_t get x_i right?
 - Yes: Decrease α_i
 - No: Increase α_i
AdaBoost: Formula for updating weights α_i

\[
\alpha_i \leftarrow \begin{cases}
\alpha_i e^{-\hat{w}_t}, & \text{if } f_t(x_i) = y_i \\
\alpha_i e^{\hat{w}_t}, & \text{if } f_t(x_i) \neq y_i
\end{cases}
\]

<table>
<thead>
<tr>
<th>$f_t(x_i) = y_i$?</th>
<th>α_i</th>
<th>Multiply α_i by</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>\hat{w}_t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>$\alpha_i e^{-\hat{w}_t}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Did f_t get x_i right?

- **AdaBoost:** learning ensemble

 - Start with same weight for all points: $\alpha_i = 1/N$

 - For $t = 1, \ldots, T$
 - Learn $f_t(x)$ with data weights α_i
 - Compute coefficient \hat{w}_t
 - Recompute weights α_i

 \[
 \hat{w}_t = \frac{1}{2} \ln \left(\frac{1 - \text{weighted_error}(f_t)}{\text{weighted_error}(f_t)} \right)
 \]

 \[
 \alpha_i \leftarrow \begin{cases}
\alpha_i e^{-\hat{w}_t}, & \text{if } f_t(x_i) = y_i \\
\alpha_i e^{\hat{w}_t}, & \text{if } f_t(x_i) \neq y_i
\end{cases}
\]

- Final model predicts by:
 \[
 \hat{y} = \text{sign} \left(\sum_{t=1}^{T} \hat{w}_t f_t(x) \right)
 \]
AdaBoost: Normalizing weights α_i

- If x_i often mistake, weight α_i gets very large.
- If x_i often correct, weight α_i gets very small.

Can cause numerical instability after many iterations.

Normalize weights to add up to 1 after every iteration:

$$\alpha_t \leftarrow \frac{\alpha_i}{\sum_{j=1}^{N} \alpha_j}$$

AdaBoost: learning ensemble

- Start with same weight for all points: $\alpha_i = 1/N$.
- For $t = 1, ..., T$:
 - Learn $f_t(x)$ with data weights α_i.
 - Compute coefficient $\hat{\alpha}_i$.
 - Recompute weights α_i.
 - Normalize weights α_i.
- Final model predicts by:

$$\hat{y} = sign \left(\sum_{t=1}^{T} \hat{\alpha}_i f_t(x) \right)$$
AdaBoost example

$t=1$: Just learn a classifier on original data
Updating weights α_i

Increase weight α_i of misclassified points

Learned decision stump $f_1(x)$

New data weights α_i

Boundary

$t=2$: Learn classifier on weighted data

Weighted data: using α_i chosen in previous iteration

Learned decision stump $f_2(x)$ on weighted data
Ensemble becomes weighted sum of learned classifiers

\[
\hat{w}_1 f_1(x) + \hat{w}_2 f_2(x) = 0.61 \hat{w}_1 + 0.53 \hat{w}_2
\]

Decision boundary of ensemble classifier after 30 iterations

training_error = 0
Boosted decision stumps

• Start same weight for all points: $\alpha_i = 1/N$

• For $t = 1, ..., T$
 - Learn $f_t(x)$: pick decision stump with lowest weighted training error according to α_i
 - Compute coefficient \hat{w}_t
 - Recompute weights α_i
 - Normalize weights α_i

• Final model predicts by:

$$\hat{y} = \text{sign} \left(\sum_{t=1}^{T} \hat{w}_t f_t(x) \right)$$
Finding best next decision stump \(f_t(x) \)

Consider splitting on each feature:

- **Income > $100k?**
 - Yes: Safe
 - No: Risky

 \[\text{weighted_error} = 0.2 \]

- **Credit history?**
 - Bad: Risky
 - Good: Safe

 \[\text{weighted_error} = 0.35 \]

- **Savings > $100k?**
 - Yes: Safe
 - No: Risky

 \[\text{weighted_error} = 0.3 \]

- **Market conditions?**
 - Bad: Risky
 - Good: Safe

 \[\text{weighted_error} = 0.4 \]

\[
\hat{w}_t = \frac{1}{2} \ln \left(\frac{1 - \text{weighted_error}(f_t)}{\text{weighted_error}(f_t)} \right) = 0.69
\]

Boosted decision stumps

- Start same weight for all points: \(\alpha_i = 1/N \)

- For \(t = 1, \ldots, T \)
 - Learn \(f_t(x) \): pick decision stump with lowest weighted training error according to \(\alpha_i \)

 - Compute coefficient \(\hat{w}_t \)

 - Recompute weights \(\alpha_i \)

 - Normalize weights \(\alpha_i \)

- Final model predicts by:

\[
\hat{y} = \text{sign} \left(\sum_{t=1}^{T} \hat{w}_t f_t(x) \right)
\]
Updating weights α_i

\[
\alpha_i \leftarrow \begin{cases}
\alpha_i e^{-W_t} = \alpha_i e^{-0.69} = \alpha_i/2, & \text{if } f_t(x_i) = y_i \\
\alpha_i e^{W_t} = \alpha_i e^{0.69} = 2\alpha_i, & \text{if } f_t(x_i) \neq y_i
\end{cases}
\]

<table>
<thead>
<tr>
<th>Credit</th>
<th>Income</th>
<th>y</th>
<th>\hat{y}</th>
<th>Previous weight α</th>
<th>New weight α</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$130K$</td>
<td>Safe</td>
<td>Safe</td>
<td>0.5</td>
<td>0.5/2 = 0.25</td>
</tr>
<tr>
<td>B</td>
<td>$80K$</td>
<td>Risky</td>
<td>Risky</td>
<td>1.5</td>
<td>0.75</td>
</tr>
<tr>
<td>C</td>
<td>$110K$</td>
<td>Risky</td>
<td>Safe</td>
<td>1.5</td>
<td>2 * 1.5 = 3</td>
</tr>
<tr>
<td>A</td>
<td>$110K$</td>
<td>Safe</td>
<td>Safe</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>$90K$</td>
<td>Safe</td>
<td>Risky</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>$120K$</td>
<td>Safe</td>
<td>Safe</td>
<td>2.5</td>
<td>1.25</td>
</tr>
<tr>
<td>C</td>
<td>$30K$</td>
<td>Risky</td>
<td>Risky</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>C</td>
<td>$60K$</td>
<td>Risky</td>
<td>Risky</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>$95K$</td>
<td>Safe</td>
<td>Risky</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>$60K$</td>
<td>Safe</td>
<td>Risky</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>$98K$</td>
<td>Safe</td>
<td>Risky</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Summary of boosting
Variants of boosting and related algorithms

There are hundreds of variants of boosting, most important:

- **Gradient boosting**: Like AdaBoost, but useful beyond basic classification

Many other approaches to learn ensembles, most important:

- **Bagging**: Pick random subsets of the data
 - Learn a tree in each subset
 - Average predictions

 • Simpler than boosting & easier to parallelize
 • Typically higher error than boosting for same # of trees (# iterations T)

Impact of boosting (*spoiler alert... HUGE IMPACT*)

- Amongst most useful ML methods ever created
- Extremely useful in computer vision
 - Standard approach for face detection, for example
- Used by **most winners** of ML competitions (Kaggle, KDD Cup,...)
 - Malware classification, credit fraud detection, ads click through rate estimation, sales forecasting, ranking webpages for search, Higgs boson detection,...
- Most deployed ML systems use model ensembles
 - Coefficients chosen manually, with boosting, with bagging, or others
What you can do now...

• Identify notion ensemble classifiers
• Formalize ensembles as the weighted combination of simpler classifiers
• Outline the boosting framework – sequentially learn classifiers on weighted data
• Describe the AdaBoost algorithm
 – Learn each classifier on weighted data
 – Compute coefficient of classifier
 – Recompute data weights
 – Normalize weights
• Implement AdaBoost to create an ensemble of decision stumps