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Bayesian Networks–
Representation 
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Learning from structured data
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TrueSkill: A Bayesian Skill Rating System
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Skill
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Digging in: 
Learning with and without context/structure
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Without context: Handwriting recognition

Character recognition, 
e.g., kernel SVMs
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Without context: Webpage classification

Company website

Personal website

University website

…
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With context: Handwriting recognition
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With context: Webpage classification
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Modeling structured relationships
via Bayesian networks
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Today – Bayesian networks

• Provided a huge advancement in AI/ML

• Generalizes naïve Bayes and logistic regression

• Compact representation for exponentially-large 
probability distributions

• Exploit conditional independencies

©2017 Emily Fox
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Bayesian network representation

Compact representation of a probability distribution.

A B

C

D

Directed Acyclic Graph

Vertices: Random Variables
Edges: Conditional dependencies 

“probabilistic relationships”
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Bayesian network probability factorization

One CPT (conditional probability table) 
for each variable

P(variable | parents of variable)

implies the factorization:

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C)

P(C|A,B)

P(B)P(A)

P(D|C)

A B

C

D
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What a Bayesian network represents (in detail) 
and what does it buy you?
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Causal structure

• Suppose we know the following:
- The flu causes sinus inflammation

- Allergies cause sinus inflammation

- Sinus inflammation causes a runny nose

- Sinus inflammation causes headaches

• How are these connected?

©2017 Emily Fox
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Possible queries

• Inference

• Most probable explanation

• Active data collection

Flu Allergy

Sinus

Head-
ache

Nose
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CarStarts? Bayesian network

• 18 binary attributes

• Inference 
- P(BatteryAge|Starts=f)

• 216 terms, why so fast?

• Not impressed?
- HailFinder BN – more than 354 = 

58149737003040059690390169 terms

©2017 Emily Fox
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Factored joint distribution – A preview

Flu Allergy

Sinus

Head-
ache

Nose
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What are these probabilities?
Conditional probability tables (CPTs)

Flu Allergy

Sinus

Head-
ache

Nose
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Number of parameters

Flu Allergy

Sinus

Head-
ache

Nose
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Factorization speeds 
up inference

Flu Allergy

Sinus

Head-
ache

Nose
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Exploit distributivity:
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Key: Independence assumptions

Knowing sinus separates variables from each other

Flu Allergy

Sinus

Head-
ache

Nose
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Marginal and conditional independence

©2017 Emily Fox
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(Marginal) Independence

• Flu and Allergy are (marginally) independent

Flu = t Flu = f

Allergy = t

Allergy = f

Allergy = t

Allergy = f

Flu = t

Flu = f

©2017 Emily Fox

F A
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Conditional independence

• Flu and Headache are not (marginally) ind.

• Flu and Headache are independent given Sinus infection

• More generally:

©2017 Emily Fox

F A

S

H N
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Conditional independence statements 
encoded by Bayesian networks
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What is a Bayes net assuming?

Local Markov Assumption: A variable X is independent of 
its non-descendents given its parents

A

B

D

C

E F

H

G I

J

E  A | B,C
E  D | B,C
F  B | E

Allows you to read off some simple
conditional independence relationships
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Explaining away example

©2017 Emily Fox

Flu Allergy

Sinus

Head-
ache

Nose

Local Markov Assumption:
A variable X is independent of its 
non-descendents given its parents
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Naïve Bayes revisited Local Markov Assumption:
A variable X is independent of its 
non-descendents given its parents

©2017 Emily Fox
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Factorization of the joint distribution
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Joint distribution

Why can we decompose? 
Markov Assumption!

Flu Allergy

Sinus

Head-
ache

Nose
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The chain rule of probabilities

• P(A,B) = P(A)P(B|A)

• More generally:
- P(X[1],…,X[d]) = P(X[1]) P(X[2]|X[1])  …  P(X[d]|X[1],…, X[d-1])

Flu

Sinus

©2017 Emily Fox
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Chain rule & joint distribution
Local Markov Assumption:
A variable X is independent of its 
non-descendents given its parents

Order of expansion matters!  Use topological order

Flu Allergy

Sinus

Head-
ache

Nose
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The Representation Theorem –
Joint distribution to BN

©2017 Emily Fox

Bayes
net

If cond. ind. in Bayes net 
are subset of cond. ind. in P

Encodes 
independence 
assumptions

Joint distribution factorizes:
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Bayesian networks recap

• Representation benefits 
- Compact representation for probability distributions

- Exponential reduction in number of parameters

- Lower variance parameter estimates from limited data

• Inference benefits
- Efficient computation of P(X|e)  (i.e., fast probabilistic inference)

- Involves variable elimination algorithms

• Other important topics
- Structure learning: What graph structure to use?

- Understanding how evidence can be incorporated and how this 
changes conditional independence statements (d separation)

©2017 Emily Fox
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Hidden Markov models:
A Bayesian network for time series
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Example: Motion Capture Segmentation
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Jump-
ing

jacks

Side 
twists

Run Squats
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Hidden Markov model

©2017 Emily Fox

jumping
jacks

squats
side

twists

State sequence

TIME

S
T

A
T

E

jumping jackssquatsside twists

Tutorial: Rabiner, Proc. IEEE 1989 Jumping
jacks

Side 
twists

Squats

Markov transition dynamics:
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Hidden Markov model

©2017 Emily Fox

jumping
jacks

squats
side

twists

State sequence

Tutorial: Rabiner, Proc. IEEE 1989 Jumping
jacks

Side 
twists

Squats

Markov transition dynamics:

Observations
(e.g., body position) 

Conditionally independent emissions:

Joint distribution factorization:

Latent Markov chain structure enables
– Efficient computation of marginals via forward-backward alg.
– Most-probable sequence via Viterbi
– Parameter learning via Baum-Welch (EM for HMMs)
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GMMs vs. HMMs
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Gaussian mixture model Hidden Markov model

ObservationsTrue mode sequence
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HMM applications

©2017 Emily Fox

Example applications:
• Parsing EEG recordings
• Discovering behaviors in videos
• Speech segmentation
• Volatility regimes in financial 

time series
• Genomics
• … 
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Incorporating evidence:
Bayes ball algorithm for analyzing 
conditional independencies

©2017 Emily Fox
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Conditional independence in Bayes nets
• Consider 4 different junction configurations

• Conditional versus unconditional independence:

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

©2017 Emily Fox
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Bayes ball algorithm
• Consider 4 different junction configurations

• Bayes ball algorithm:

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

©2017 Emily Fox
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’
V structure. 
C not observed. Ball bounces away.

A path from A to H is Active if the Bayes ball can get from A to H

©2017 Emily Fox
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’
V structure. 
C observed. Ball can pass through

A path from A to H is Active if the Bayes ball can get from A to H

©2017 Emily Fox
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Bayes ball example

A HC
E G

DB F

F’’

F’

Ball gets stuck here

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

V structure. 
Descendent of F observed. 
Ball can pass through

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H

©2017 Emily Fox


