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ICU Monitoring
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Digging in:
Learning with and without context/structure

Without context: Handwriting recognition
A 14
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Character recognition,
e.g., kernel SVMs
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Without context: Webpage classification
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With context: Webpage classification
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Modeling structured relationships

via Bayesian networks
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Today — Bayesian networks

* Provided a huge advancement in Al/ML
» Generalizes naive Bayes and logistic regression

ﬁ” Compact representation for exponentially-large
probability distributions

* Exploit conditional independencies

Ca— ——
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Bayesian network representation

Compact representation of a probability distribution.

Directed Acyclic Graph

Vertices: Random Variables
Edges: Conditional dependencies
“probabilistic relationships”
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Bayesian network probability factorization

One CPT (conditional probability table)
P(B) for each variable

P(variable | parents of variable)

PCIAB)
implies the factorization:

P(X) = H P(X[j] | parents(X[4]))
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What a Bayesian network represents (in detail)
and what does it buy you?




3/8/2017

15

Causal structure

» Suppose we know the following:

The flu causes sinus inflammation
Allergies cause sinus inflammation
Sinus inflammation causes a runny nose
Sinus inflammation causes headaches

« How are these connected?
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Possible queries

. Inference
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CarStarts? Bayesian network
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Factored joint distribution — A preview
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What are these probabilities?
Conditional probability tables (CPTs)

P(F) P(F—'ﬂ‘ 0.0§
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Factorization speeds
up inference

Exploit distributivity:
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Key: Independence assumptions
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(Marginal) Independence

* Flu and Allergy are (marginally) independent

X

FLA Flu=t 0.7
Ple) —
PR, F) = PAYP(F) 0%
ﬁ Allergy =t 0.y
1)
\D(P(\F): p(A) Allergy = f 0.6
Flu=t Flu=f
P(a,F) Allergy =t 0-;'4;-00-; o.4x0-&
Allergy = f 0.3 % 02 0.3 x0.6
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Conditional independence }{

* Flu and Headache are not (marginally) ind.
PLHk | Fz1) # P(H=%)

* Flu and Headache are independent given Sinus infection
(P(‘H7¥ l F?'E, S:'L') - F(H:t { S;-E)

* More generally:
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Conditional independence statements
ded by B ' twork

13
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What is a Bayes net assuming?

Local Markov Assumption: A variable X is independent of

its aon-descendents given its parents

7 parents ELA|BC
ELD|BC
FLB|E

A&Scu\éu"ks

Allows you to read off some simple
conditional independence relationships
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Local Markov Assumption:
A variable X is independent of its
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Naive Bayes revisited Barable X maependento s
non-descendents given its parents
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Joint distribution

Allergy

Why can we decompose?
Markov Assumption!

31 ©2017 Emily Fo CSE 446: Machine Learning

The chain rule of probabilities

* P(A,B) = P(A)P(B|A)

* More generally:
- POXA].....X[d]) = P(X[1]) POX[2]IX[L]) ... PCX[A]IX[1]...., X[d-1])

32 ©2017 Emily Fo CSE 446: Machine Learning
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Local Markov Assumption:

Chain rule & joint distribution  avaribie xis independentor s

non-descendents given its parents

Allergy

Order of expansion matters! Use topological order

©2017 Emily FO CSE 446 Machine Learning

The Representation Theorem —
Joint distribution to BN

Encodes

independence
assumptions

If cond. ind. in Bayes net ‘ Joint distribution factorizes:

are subset of cond. ind. in P d , ,
P(X) = | [ P(X[j] | parents(X[]))
j=1
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Bayesian networks recap

* Representation benefits
- Compact representation for probability distributions
- Exponential reduction in number of parameters
- Lower variance parameter estimates from limited data

 Inference benefits
- Efficient computation of P(X|e) (i.e., fast probabilistic inference)
- Involves variable elimination algorithms

* Other important topics
- Structure learning: What graph structure to use?

- Understanding how evidence can be incorporated and how this
changes conditional independence statements (d separation)
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Hidden Markov models:

A Bayesian network for time series

18
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Example: Motion Capture Segmentation

37 ©2017 Emily Fo CSE 446 Machine Learning |

Hidden Markov model

Tutorial: Rabiner, Proc. |IEEE 1989 Jumping squats I Side I

twists

JES

Markov transition dynamics:

Pr(z =Bz =W) = 4 G eI CT)

State sequence

38 ©2017 Emily Fo CSE 446: Machine Learning |
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Hidden Markov model

Tutorial: Rabiner, Proc. |IEEE 1989 Jumping Side

jacks twists

Markov transition dynamics:
Pr(z; =l |zi(—1 =H) = Ay
Conditionally independent emissions:

Observations

Pr(yt | xt - . ) = N(lu’. 9 E. ) (e.g., body position)
Joint distribution factorization:

Latent Markov chain structure enables
— Efficient computation of marginals p(x¢ | y1,...,yr) via forward-backward alg.
— Most-probable sequence via Viterbi
— Parameter learning via Baum-Welch (EM for HMMs)
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GMMs vs. HMMs

Gaussian mixture model Hidden Markov model

True mode sequence

o
Observations

o 0 200 400 600 800 1000
Time
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Example applications: ! = —

Parsing EEG recordings L e s
« Discovering behaviorsin videos e —
e Speech segmentation

¢ Volatility regimes in financial )
time series Speaker A Speaker B

e Genomics

41 ©2017 Emily Fox CSE 446: Machine Leaming |

Incorporating evidence:
Bayes ball algorithm for analyzing

conditional independencies

21
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Conditional independence in Bayes nets

» Consider 4 different junction configurations
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Bayes ball algorithm

e Consider 4 different junction configurations
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—O——O— O
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—O——D— O
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

=)
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

OO D— O~
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—O—2D—O— O~

V structure.

C not observed. Ball bounces away.

49
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—C—ig— OO~
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—O—2g—O— O —

V structure.
C observed. Ball can pass through
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—C—g—O— O~

Ball gets stuck here
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

o
@
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

ia
V structure. @

Descendent of F observed.
Ball can pass through

o4 ©2017 Emily FO CSE 446 Machine Learning
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

©2017 Emily Fox

7
i
©

.@

CSE 446 Machine Learning

28



