Linear classifiers:
Scaling up learning via SGD

Stochastic gradient descent:
Learning, one data point at a time
Stochastic gradient ascent

\[w(t) \rightarrow w(t+1) \rightarrow w(t+2) \rightarrow w(t+3) \rightarrow w(t+4) \]

Update coefficients
Update coefficients
Update coefficients
Update coefficients

Compute gradient

Many updates for each pass over data

Use only small subsets of data

Stochastic gradient ascent for logistic regression

init \(w^{(1)} = 0, t=1 \)

until converged

for \(j=0, \ldots, D \)

\[\text{partial}[j] = \sum_{i=1}^{N} h_j(x_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid x_i, w^{(t)}) \right) \]

\[w_j^{(t+1)} \leftarrow w_j^{(t)} + \eta \text{ partial}[j] \]

t \leftarrow t + 1

Each time, pick different data point i

Sum by data points
Why would stochastic gradient ever work???

Gradient is direction of steepest ascent

Gradient is "best" direction, but any direction that goes "up" would be useful
In ML, steepest direction is sum of “little directions” from each data point

\[
\frac{\partial \ell(w)}{\partial w_j} = \sum_{i=1}^{N} \frac{\partial \ell_i(w)}{\partial w_j}
\]

For most data points, contribution points “up”

Stochastic gradient:
Pick a data point and move in direction

\[
\frac{\partial \ell(w)}{\partial w_j} \approx \frac{\partial \ell_i(w)}{\partial w_j}
\]

Most of the time, total likelihood will increase
Stochastic gradient ascent:
Most iterations increase likelihood, but sometimes decrease it ➔
On average, make progress

until converged
for i = 1, ..., N
 for j = 0, ..., D
 \(w_j^{(t+1)} \leftarrow w_j^{(t)} + \eta \frac{\partial \ell_i(w)}{\partial w_j} \)
t \leftarrow t + 1

Convergence path
Convergence paths

Gradient

Stochastic gradient

Stochastic gradient convergence is “noisy”

Stochastic gradient makes “noisy” progress

Stochastic gradient achieves higher likelihood sooner, but it’s noisier

Gradient usually increases likelihood smoothly

Total time proportional to # passes over data

Better Avg. log likelihood

of passes over dataset

SGD, step_size=1e-01 (*)

batch GD, step_size=5e-01
Eventually, gradient catches up

Note: should only trust “average” quality of stochastic gradient

Avg. log likelihood

Stochastic gradient
Gradient

SGD, step_size=1e-01 (*)
batch GD, step_size=5e-01

The last coefficients may be really good or really bad!! 😞

Stochastic gradient will eventually oscillate around a solution

$\mathbf{w}^{(1005)}$ was good

How do we minimize risk of picking bad coefficients

Minimize noise:
don’t return last learned coefficients

Output average:

$$\hat{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$$
Summary of why stochastic gradient works

- Gradient finds direction of steepest ascent
- Gradient is sum of contributions from each data point
- Stochastic gradient uses direction from 1 data point
- On average increases likelihood, sometimes decreases
- Stochastic gradient has “noisy” convergence

Online learning:
Fitting models from streaming data
Batch vs online learning

Batch learning
- All data is available at start of training time

Online learning
- Data arrives (streams in) over time
 - Must train model as data arrives!

Online learning example: Ad targeting

- Input: x_t (User info, page text)
- Website
 - Ad1
 - Ad2
 - Ad3
- $\hat{y} = $ Suggested ads
- User clicked on Ad2
 - $y_t = $ Ad2
- ML algorithm
 - $\hat{w}^{(t)}$ -> $\hat{w}^{(t+1)}$
Online learning problem

- Data arrives over each time step t:
 - Observe input x_t
 - Info of user, text of webpage
 - Make a prediction \hat{y}_t
 - Which ad to show
 - Observe true output y_t
 - Which ad user clicked on

Need ML algorithm to update coefficients each time step!

Stochastic gradient ascent can be used for online learning!!

- init $w^{(1)} = 0$, $t=1$
- Each time step t:
 - Observe input x_t
 - Make a prediction \hat{y}_t
 - Observe true output y_t
 - Update coefficients:

$$
\text{for} \ j=0, \ldots, D
\newline
w_j^{(t+1)} \leftarrow w_j^{(t)} + \eta \frac{\partial \ell_t(w)}{\partial w_j}
$$
Summary of online learning

Data arrives over time

Must make a prediction every time new data point arrives

Observe true class after prediction made

Want to update parameters immediately

Summary of stochastic gradient descent
What you can do now...

- Significantly speedup learning algorithm using stochastic gradient
- Describe intuition behind why stochastic gradient works
- Apply stochastic gradient in practice
- Describe online learning problems
- Relate stochastic gradient to online learning
Predicting potential loan defaults

What makes a loan risky?

I want a to buy a new house!

Credit History ★★★★★
Income ★★★
Term ★★★★★
Personal Info ★★★
Credit history explained

Did I pay previous loans on time?

Example: excellent, good, or fair

Credit History ★★★★★
Income ★★★
Term ★★★★★★
Personal Info ★★★

Income

What’s my income?

Example: $80K per year

Credit History ★★★★★
Income ★★★
Term ★★★★★★
Personal Info ★★★
Loan terms

How soon do I need to pay the loan?

Example: 3 years, 5 years, ...

Personal information

Age, reason for the loan, marital status, ...

Example: Home loan for a married couple
Intelligent application

Loan Applications

Intelligent loan application review system

Safe ✓

Risky ✗

Risky ✗

Classifier review

Classifier MODEL

Input: \(x_i \)

Output: \(\hat{y} \) Predicted class

\(\hat{y}_i = +1 \)
Safe

\(\hat{y}_i = -1 \)
Risky
This module ... decision trees

Scoring a loan application

\[x_i = (\text{Credit} = \text{poor}, \text{Income} = \text{high}, \text{Term} = 5 \text{ years}) \]
Decision tree learning problem

Training data: \(N \) observations \((x_i, y_i)\)

<table>
<thead>
<tr>
<th>Credit</th>
<th>Term</th>
<th>Income</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>risky</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>low</td>
<td>risky</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>3 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
</tbody>
</table>

Optimize quality metric on training data \(T(X) \)
Quality metric: Classification error

- Error measures fraction of mistakes
 \[
 \text{Error} = \frac{\# \text{incorrect predictions}}{\# \text{examples}}
 \]
 - Best possible value: 0.0
 - Worst possible value: 1.0

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard!

Learning the smallest decision tree is an NP-hard problem [Hyafil & Rivest ’76]
Greedy decision tree learning

Our training data table

Assume $N = 40$, 3 features

<table>
<thead>
<tr>
<th>Credit</th>
<th>Term</th>
<th>Income</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>risky</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>low</td>
<td>risky</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>3 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
</tbody>
</table>
Start with all the data

Loan status: Safe Risky

(all data)

of Risky loans

22 18

of Safe loans

N = 40 examples

Compact visual notation: Root node

Loan status: Safe Risky

Root

22 18

of Risky loans

of Safe loans

N = 40 examples
Decision stump: Single level tree

Loan status:
Safe Risky

Root

22 18

Split on Credit

Credit?

excellent

9 0
Subset of data with Credit = excellent

fair

9 4
Subset of data with Credit = fair

poor

4 14
Subset of data with Credit = poor

Visual notation: Intermediate nodes

Loan status:
Safe Risky

Root

22 18

Credit?

excellent

9 0
Intermediate nodes

fair

9 4

poor

4 14
Making predictions with a decision stump

For each intermediate node, set $\hat{y} =$ majority value

Selecting best feature to split on
How do we learn a decision stump?

Loan status: Safe Risky

Root

Find the “best” feature to split on!

Credit?

excellent 9 0

fair 9 4

poor 4 14

How do we select the best feature?

Choice 1: Split on Credit

Choice 2: Split on Term

Loan status: Safe Risky

Root

Credit?

excellent 9 0

fair 9 4

poor 4 14

OR

Loan status: Safe Risky

Root

Term?

3 years 16 4

5 years 6 14
How do we measure effectiveness of a split?

Idea: Calculate classification error of this decision stump

Error = \frac{\text{# mistakes}}{\text{# data points}}

Calculating classification error

• Step 1: \(\hat{y} \) = class of majority of data in node
• Step 2: Calculate classification error of predicting \(\hat{y} \) for this data

\[
\text{Error} = \frac{\text{# mistakes}}{\text{# data points}} = \frac{18}{22 + 18} = \frac{18}{40} = 0.45
\]

<table>
<thead>
<tr>
<th>Tree</th>
<th>Classification error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(root)</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Choice 1: Split on **Credit** history?

Choice 1: Split on Credit

Does a *split on Credit* reduce classification error below 0.45?

<table>
<thead>
<tr>
<th>Loan status: Safe</th>
<th>Root</th>
<th>Credit?</th>
<th>excellent</th>
<th>fair</th>
<th>poor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22 18</td>
<td></td>
<td>9 0</td>
<td>9 4</td>
<td>4 14</td>
</tr>
</tbody>
</table>

Split on **Credit**: Classification error

Choice 1: Split on Credit

<table>
<thead>
<tr>
<th>Loan status: Safe</th>
<th>Root</th>
<th>Credit?</th>
<th>excellent</th>
<th>fair</th>
<th>poor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22 18</td>
<td></td>
<td>9 0</td>
<td>9 4</td>
<td>4 14</td>
</tr>
</tbody>
</table>

Error = ________

<table>
<thead>
<tr>
<th>Tree</th>
<th>Classification error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(root)</td>
<td>0.45</td>
</tr>
<tr>
<td>Split on credit</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Choice 2: Split on Term?

Loan status: Safe Risky

Root

Term?

3 years
16 4

Safe

5 years
6 14

Risky

Choice 2: Split on Term

Evaluating the split on Term

Choice 2: Split on Term

Loan status: Safe Risky

Root

Term?

3 years
16 4

Safe

5 years
6 14

Risky

4 mistakes

6 mistakes

Error = ________ =

<table>
<thead>
<tr>
<th>Tree</th>
<th>Classification error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(root)</td>
<td>0.45</td>
</tr>
<tr>
<td>Split on credit</td>
<td>0.2</td>
</tr>
<tr>
<td>Split on term</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Choice 1 vs Choice 2: Comparing split on Credit vs Term

Choice 1: Split on Credit

Choice 2: Split on Term

Tree	Classification error
(root) | 0.45
split on credit | 0.2
split on loan term | 0.25

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature $h_i(x)$:
 1. Split data of M according to feature $h_i(x)$
 2. Compute classification error split
- Chose feature $h^*(x)$ with lowest classification error
We’ve learned a decision stump, what next?

Loan status:
Safe Risky

Root

22 18

Credit?

excellent 9 0

Safe

fair 9 4

poor 4 14

All data points are Safe ➔ nothing else to do with this subset of data

Leaf node
Tree learning = Recursive stump learning

Loan status: Safe Risky

Root
22 18

Credit?

excellent
9 0

fair
9 4

poor
4 14

Safe

Build decision stump with subset of data where Credit = fair

Build decision stump with subset of data where Credit = poor

Second level

Loan status: Safe Risky

Root
22 18

Credit?

excellent
9 0

fair
9 4

poor
4 14

Term?

3 years
0 4

5 years
9 0

Safe

Risky

Income?

high
4 5

Low
0 9

Risky

Safe

Build another stump these data points
Final decision tree

Loan status:
Safe Risky

Root
excellent
Fair
Term?
3 years
5 years
Risk yes
Safe

Credit?
Fair
Credit?

Income?
high
low
Term?
3 years
5 years
Risk yes
Safe

Pick best feature to split on
Learn decision stump with this split
For each leaf of decision stump, recurse
When do we stop???
Stopping condition 1: All data agrees on y

All data in these nodes have same y value ➔ Nothing to do

Stopping condition 2: Already split on all features

Already split on all possible features ➔ Nothing to do
Greedy decision tree learning

• **Step 1:** Start with an empty tree
 - **Step 2:** Select a feature to split data
 - For each split of the tree:
 • **Step 3:** If nothing more to, make predictions
 • **Step 4:** Otherwise, go to Step 2 & continue (recurse) on this split

- Pick feature split leading to lowest classification error
- Stopping conditions 1 & 2
- Recursion

Is this a good idea?

Proposed stopping condition 3:
Stop if no split reduces the classification error
Stopping condition 3: Don’t stop if error doesn’t decrease???

\[y = x[1] \text{ xor } x[2] \]

<table>
<thead>
<tr>
<th>(x[1])</th>
<th>(x[2])</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

\[\text{Root} \]

\[\begin{array}{cc}
\text{y values} & \text{Error} \\
\text{True} & \text{False} & & \text{Root} \\
2 & 2 & & \end{array} \]

\[\text{Tree Classification error} \]

\[\begin{array}{cc}
\text{(root)} & 0.5 \\
\end{array} \]

Consider split on \(x[1]\)

\[y = x[1] \text{ xor } x[2] \]

<table>
<thead>
<tr>
<th>(x[1])</th>
<th>(x[2])</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

\[\text{Root} \]

\[\begin{array}{cc}
\text{y values} & \text{Error} \\
\text{True} & \text{False} & & \text{Root} \\
2 & 2 & & \end{array} \]

\[\text{Tree Classification error} \]

\[\begin{array}{cc}
\text{(root)} & 0.5 \\
\text{Split on } x[1] & 0.5 \\
\end{array} \]
Consider split on $x[2]$

$y = x[1] \text{ xor } x[2]$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

y values
True False

Root
2 2

Error = $\frac{1+1}{2+2} = 0.5$

Neither features improve training error... Stop now???

Final tree with stopping condition 3

$y = x[1] \text{ xor } x[2]$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

y values
True False

Root
2 2

Tree Classification error
(root) 0.5
Split on $x[1]$ 0.5
Split on $x[2]$ 0.5

Predict True

Tree Classification error
with stopping condition 3 0.5
Without stopping condition 3

Condition 3 (stopping when training error doesn’t improve) is not recommended!

\[y = x[1] \text{ xor } x[2] \]

<table>
<thead>
<tr>
<th>(x[1])</th>
<th>(x[2])</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

Tree Classification

- **with stopping condition 3**: classification error 0.5
- **without stopping condition 3**: classification error 1.0

Decision tree learning:

Real valued features
How do we use real values inputs?

<table>
<thead>
<tr>
<th>Income</th>
<th>Credit</th>
<th>Term</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$105 K</td>
<td>excellent</td>
<td>3 yrs</td>
<td>Safe</td>
</tr>
<tr>
<td>$112 K</td>
<td>good</td>
<td>5 yrs</td>
<td>Risky</td>
</tr>
<tr>
<td>$73 K</td>
<td>fair</td>
<td>3 yrs</td>
<td>Safe</td>
</tr>
<tr>
<td>$69 K</td>
<td>excellent</td>
<td>5 yrs</td>
<td>Safe</td>
</tr>
<tr>
<td>$217 K</td>
<td>excellent</td>
<td>3 yrs</td>
<td>Risky</td>
</tr>
<tr>
<td>$120 K</td>
<td>good</td>
<td>5 yrs</td>
<td>Safe</td>
</tr>
<tr>
<td>$64 K</td>
<td>fair</td>
<td>3 yrs</td>
<td>Risky</td>
</tr>
<tr>
<td>$340 K</td>
<td>excellent</td>
<td>5 yrs</td>
<td>Safe</td>
</tr>
<tr>
<td>$60 K</td>
<td>good</td>
<td>3 yrs</td>
<td>Risky</td>
</tr>
</tbody>
</table>

Threshold split

Loan status:
Safe Risky

Split on the feature Income

Split on Income

< $60K
8 13

>= $60K
14 5

Subset of data with Income >= $60K
Finding the best threshold split

Infinite possible values of t

Income $= t^*$

Income $< t^*$

Income $>= t^*$

Safe

Risky

Consider a threshold between points

Same classification error for any threshold split between v_A and v_B
Only need to consider mid-points

Finite number of splits to consider

Threshold split selection algorithm

- **Step 1:** Sort the values of a feature $h_j(x)$:

 Let $\{v_1, v_2, v_3, \ldots, v_N\}$ denote sorted values

- **Step 2:**
 - For $i = 1 \ldots N-1$
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error for threshold split $h_j(x) \geq t_i$
 - Chose the t^* with the lowest classification error
Visualizing the threshold split

Threshold split is the line $Age = 38$

Split on Age ≥ 38

Predict Safe

Predict Risky
Depth 2: Split on Income \geq $60K$

Threshold split is the line \textit{Income} = 60K

Each split partitions the 2-D space
Summary of decision trees

What you can do now

• Define a decision tree classifier
• Interpret the output of a decision trees
• Learn a decision tree classifier using greedy algorithm
• Traverse a decision tree to make predictions
 – Majority class predictions
 – Probability predictions
 – Multiclass classification