CSE446: Kernels Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin, and Luke Zettlemoyer

What if the data is not linearly separable?

Feature space can get really large really quickly!

Non-linear features: 1D input

 Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

Feature spaces

- General idea: map to higher dimensional space
 - if **x** is in \mathbb{R}^n , then $\phi(\mathbf{x})$ is in \mathbb{R}^m for m>n
 - Can now learn feature weights w in R^m and predict:

$$y = sign(\mathbf{w} \cdot \phi(\mathbf{x}))$$

 Linear function in the higher dimensional space will be non-linear in the original space

Mapping to a higher dimensional space

Mapping to a higher dimensional space

Higher dimensional space

Efficient dot-product of polynomials

Polynomials of degree exactly *d*

$$d=1
\phi(u).\phi(v) = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u_1v_1 + u_2v_2 = u.v
d=2
\phi(u).\phi(v) = \begin{pmatrix} u_1^2 \\ u_1u_2 \\ u_2u_1 \\ u_2^2 \end{pmatrix} \cdot \begin{pmatrix} v_1^2 \\ v_1v_2 \\ v_2v_1 \\ v_2^2 \end{pmatrix} = u_1^2v_1^2 + 2u_1v_1u_2v_2 + u_2^2v_2^2
= (u_1v_1 + u_2v_2)^2
(v). O(v) = (v.v) = (u.v)^2
For any d (we will skip proof):
K(u, v) = \phi(u).\phi(v) = (u.v)^d$$

 Cool! Taking a dot product and an exponential gives same results as mapping into high dimensional space and then taking dot product

The "Kernel Trick"

• A *kernel function* defines a dot product in some feature space.

 $K(\mathbf{u},\mathbf{v}) = \mathbf{\Phi}(\mathbf{u}) \bullet \mathbf{\Phi}(\mathbf{v})$

• Example:

2-dimensional vectors $\mathbf{u} = [u_1 \ u_2]$ and $\mathbf{v} = [v_1 \ v_2]$; let $K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u} \cdot \mathbf{v})^2$, Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{\Phi}(\mathbf{x}_i) \cdot \mathbf{\Phi}(\mathbf{x}_j)$: $K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u} \cdot \mathbf{v})^2 = 1 + u_1^2 v_1^2 + 2 u_1 v_1 u_2 v_2 + u_2^2 v_2^2 + 2 u_1 v_1 + 2 u_2 v_2 =$ $= [1, u_1^2, \sqrt{2} u_1 u_2, u_2^2, \sqrt{2} u_1, \sqrt{2} u_2] \cdot [1, v_1^2, \sqrt{2} v_1 v_2, v_2^2, \sqrt{2} v_1, \sqrt{2} v_2] =$ $= \mathbf{\Phi}(\mathbf{u}) \cdot \mathbf{\Phi}(\mathbf{v}), \text{ where } \mathbf{\Phi}(\mathbf{x}) = [1, x_1^2, \sqrt{2} x_1 x_2, x_2^2, \sqrt{2} x_1, \sqrt{2} x_2]$

- Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each φ(x) explicitly).
- But, it isn't obvious yet how we will incorporate it into actual learning algorithms...

"Kernel trick" for The Perceptron!

- Never compute features explicitly!!!
 - Compute dot products in closed form $K(u,v) = \Phi(u) \bullet \Phi(v)$
- Standard Perceptron:
 - set w_i=0 for each feature i
 - set aⁱ=0 for each example i
- For t=1..T, i=1..n: 2 $y = sign(w \cdot \phi(x^i))$ - if y \neq yⁱ • $w = w + y^i \phi(x^i)$ • aⁱ += yⁱ
 - At all times during learning:

$$w = \sum_{k} a^{k} \phi(x^{k})$$

• Kernelized Perceptron:

• set aⁱ=0 for each example i

• For t=1..T, i=1..n:
-
$$y = sign((\sum_{k} a^{k} \phi(x^{k})) \cdot \phi(x^{i})))$$

= $sign(\sum_{k} a^{k} K(x^{k}, x^{i}))$
- if $y \neq y^{i}$
• $a^{i} += y^{i}$

Exactly the same computations, but can use K(u,v) to avoid enumerating the features!!!

- set aⁱ=0 for each example i
- For t=1..T, i=1..n: - $y = sign(\sum_{k} a^{k}K(x^{k}, x^{i}))$ - if y ≠ yⁱ • $a^{i} += y^{i}$

$$K(u,v) = (u \bullet v)^2$$

e.g.,
$$K(x^1,x^2)$$

= K([1,1],[-1,1])
= (1x-1+1x1)^2
= 0

	К	X ¹	x ²	X ³	x ⁴
)	X1	4	0	4	0
	x ²	0	4	0	4
	X ³	4	0	4	0
	x ⁴	0	4	0	4

Initial:

- a = [a¹, a², a³, a⁴] = [0,0,0,0] t=1,i=1
- $\Sigma_k a^k K(x^k, x^1) = 0x4+0x0+0x4+0x0 = 0$, sign(0)=-1
- a¹ += y¹ → a¹+=1, new a= [1,0,0,0]

t=1,i=2

- $\Sigma_k a^k K(x^k, x^2) = 1x0+0x4+0x0+0x4 = 0$, sign(0)=-1 t=1,i=3
- $\Sigma_k a^k K(x^k, x^3) = 1x4+0x0+0x4+0x0 = 4$, sign(4)=1 t=1,i=4
- $\Sigma_k a^k K(x^k, x^4) = 1x0+0x4+0x0+0x4 = 0$, sign(0)=-1 t=2,i=1
- $\Sigma_k a^k K(x^k, x^1) = 1x4+0x0+0x4+0x0 = 4$, sign(4)=1

Converged!!!

- y=Σ_k a^k K(x^k,x)
 - $= 1 \times K(x^{1},x) + 0 \times K(x^{2},x) + 0 \times K(x^{3},x) + 0 \times K(x^{4},x)$

x1

- = K(x¹,x)
- = K([1,1],x) (because x¹=[1,1])
- = $(x_1 + x_2)^2$ (because $K(u, v) = (u \cdot v)^2$)

Common kernels

- Polynomials of degree exactly d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$
- Polynomials of degree up to d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$
- Gaussian kernels

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u},\mathbf{v}) = anh(\eta \mathbf{u} \cdot \mathbf{v} +
u)$$
 .

• And many others: very active area of research!

Kernels in logistic regression

$$P(Y = 0 | \mathbf{X} = \mathbf{x}, \mathbf{w}, w_0) = \frac{1}{1 + exp(w_0 + \mathbf{w} \cdot \mathbf{x})}$$
• Define weights in terms of data points:

$$\mathbf{w} = \sum_{j} \alpha^{j} \phi(\mathbf{x}^{j})$$

$$P(Y = 0 | \mathbf{X} = \mathbf{x}, \mathbf{w}, w_0) = \frac{1}{1 + exp(w_0 + \sum_{j} \alpha^{j} \phi(\mathbf{x}^{j}) \cdot \phi(\mathbf{x}))}$$

$$= \frac{1}{1 + exp(w_0 + \sum_{j} \alpha^{j} K(\mathbf{x}^{j}, \mathbf{x}))}$$

- Derive gradient descent rule on α^{j} , w₀
- Similar tricks for all linear models: SVMs, etc

What you need to know

- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized perceptron