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What if the data is not linearly separable?

Use features of features 

of features of features….

Feature space can get really large really quickly!



Non-linear features: 1D input
• Datasets that are linearly separable with some noise work 

out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space:
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Feature spaces
• General idea:   map to higher dimensional space

– if x is in Rn, then φ(x) is in Rm for m>n

– Can now learn feature weights w in Rm and predict: 

– Linear function in the higher dimensional space will be non-linear in 
the original space

x → φ(x)
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Input feature space

Polynomial of degree d

Higher dimensional space

What can go wrong?

Mapping to a higher dimensional space



Higher order polynomials

number of input dimensions
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m – input features

d – degree of polynomial

grows fast!

d = 6, m = 100

about 1.6 billion terms
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Input feature space

Polynomial of degree d

Higher dimensional space

Mapping to a higher dimensional space

<Dot Product>



Efficient dot-product of polynomials
Polynomials of degree exactly d

d=1

d=2

For any d (we will skip proof):

• Cool! Taking a dot product and an exponential gives same 

results as mapping into high dimensional space and then taking 

dot product



The “Kernel Trick”
• A kernel function defines a dot product in some feature space.

K(u,v)= φ(u)φ(v)

• Example: 

2-dimensional vectors u=[u1   u2] and v=[v1   v2];  let K(u,v)=(1 + uv)2
,

Need to show that K(xi,xj)= φ(xi) φ(xj):

K(u,v)=(1 + uv)2
,= 1+ u1

2v1
2 + 2 u1v1 u2v2+ u2

2v2
2 + 2u1v1 + 2u2v2=

= [1, u1
2, √2 u1u2, u2

2, √2u1, √2u2]  [1,  v1
2, √2v1v2, v2

2, √2v1, √2v2] =

= φ(u) φ(v),    where φ(x) = [1,  x1
2, √2 x1x2, x2

2, √2x1, √2x2]

• Thus, a kernel function implicitly maps data to a high-dimensional space 
(without the need to compute each φ(x) explicitly).

• But, it isn’t obvious yet how we will incorporate it into actual learning 
algorithms…



“Kernel trick” for The Perceptron!
• Never compute features explicitly!!!

– Compute dot products in closed form K(u,v) = Φ(u)  Φ(v) 

• Standard Perceptron: • Kernelized Perceptron:

• set wi=0 for each feature i

• set ai=0 for each example i

• For t=1..T, i=1..n:
–

– if y ≠ yi

•

• ai += yi

• At all times during learning:

• set ai=0 for each example i

• For t=1..T, i=1..n:
–

– if y ≠ yi

• ai += yi

Exactly the same 

computations, but can use 

K(u,v) to avoid enumerating 

the features!!!



x2

x1

x1 x2 y
1 1 1

-1 1 -1

-1 -1 1

1 -1 -1

Initial:
• a = [a1, a2, a3, a4] = [0,0,0,0]
t=1,i=1
• Σka

kK(xk,x1) = 0x4+0x0+0x4+0x0 = 0, sign(0)=-1
• a1 += y1

 a1+=1, new a= [1,0,0,0]
t=1,i=2
• Σka

kK(xk,x2) = 1x0+0x4+0x0+0x4 = 0, sign(0)=-1
t=1,i=3
• Σka

kK(xk,x3) = 1x4+0x0+0x4+0x0 = 4, sign(4)=1
t=1,i=4
• Σka

kK(xk,x4) = 1x0+0x4+0x0+0x4 = 0, sign(0)=-1
t=2,i=1
• Σka

kK(xk,x1) = 1x4+0x0+0x4+0x0 = 4, sign(4)=1
…

Converged!!!
• y=Σk ak K(xk,x)

= 1×K(x1,x)+0×K(x2,x)+0×K(x3,x)+0×K(x4,x)
= K(x1,x)
= K([1,1],x)   (because x1=[1,1])
= (x1+x2)2        (because K(u,v) = (uv)2)

• set ai=0 for each example i

• For t=1..T, i=1..n:
–

– if y ≠ yi

• ai += yi

K(u,v) = (uv)2

e.g., 
K(x1,x2) 

= K([1,1],[-1,1])
= (1x-1+1x1)2

= 0

K x1 x2 x3 x4

x1 4 0 4 0

x2 0 4 0 4

x3 4 0 4 0

x4 0 4 0 4



Common kernels
• Polynomials of degree exactly d

• Polynomials of degree up to d

• Gaussian kernels

• Sigmoid

• And many others: very active area of research!



Kernels in logistic regression

• Define weights in terms of data points:

• Derive gradient descent rule on j,w0

• Similar tricks for all linear models: SVMs, etc



What you need to know

• The kernel trick

• Derive polynomial kernel

• Common kernels

• Kernelized perceptron


