
CSE446: Kernels
Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin, and Luke Zettlemoyer

What if the data is not linearly separable?

Use features of features

of features of features….

Feature space can get really large really quickly!

Non-linear features: 1D input
• Datasets that are linearly separable with some noise work

out great:

• But what are we going to do if the dataset is just too hard?

• How about… mapping data to a higher-dimensional space:

0

0

x2

x

x

x

Feature spaces
• General idea: map to higher dimensional space

– if x is in Rn, then φ(x) is in Rm for m>n

– Can now learn feature weights w in Rm and predict:

– Linear function in the higher dimensional space will be non-linear in
the original space

x → φ(x)

5

6

7

m

Input feature space

Polynomial of degree d

Higher dimensional space

What can go wrong?

Mapping to a higher dimensional space

Higher order polynomials

number of input dimensions

n
u
m

b
e
r

o
f

m
o
n
o
m

ia
l
te

rm
s

d=2

d=4

d=3

m – input features

d – degree of polynomial

grows fast!

d = 6, m = 100

about 1.6 billion terms

9

m

Input feature space

Polynomial of degree d

Higher dimensional space

Mapping to a higher dimensional space

<Dot Product>

Efficient dot-product of polynomials
Polynomials of degree exactly d

d=1

d=2

For any d (we will skip proof):

• Cool! Taking a dot product and an exponential gives same

results as mapping into high dimensional space and then taking

dot product

The “Kernel Trick”
• A kernel function defines a dot product in some feature space.

K(u,v)= φ(u)φ(v)

• Example:

2-dimensional vectors u=[u1 u2] and v=[v1 v2]; let K(u,v)=(1 + uv)2
,

Need to show that K(xi,xj)= φ(xi) φ(xj):

K(u,v)=(1 + uv)2
,= 1+ u1

2v1
2 + 2 u1v1 u2v2+ u2

2v2
2 + 2u1v1 + 2u2v2=

= [1, u1
2, √2 u1u2, u2

2, √2u1, √2u2] [1, v1
2, √2v1v2, v2

2, √2v1, √2v2] =

= φ(u) φ(v), where φ(x) = [1, x1
2, √2 x1x2, x2

2, √2x1, √2x2]

• Thus, a kernel function implicitly maps data to a high-dimensional space
(without the need to compute each φ(x) explicitly).

• But, it isn’t obvious yet how we will incorporate it into actual learning
algorithms…

“Kernel trick” for The Perceptron!
• Never compute features explicitly!!!

– Compute dot products in closed form K(u,v) = Φ(u) Φ(v)

• Standard Perceptron: • Kernelized Perceptron:

• set wi=0 for each feature i

• set ai=0 for each example i

• For t=1..T, i=1..n:
–

– if y ≠ yi

•

• ai += yi

• At all times during learning:

• set ai=0 for each example i

• For t=1..T, i=1..n:
–

– if y ≠ yi

• ai += yi

Exactly the same

computations, but can use

K(u,v) to avoid enumerating

the features!!!

x2

x1

x1 x2 y
1 1 1

-1 1 -1

-1 -1 1

1 -1 -1

Initial:
• a = [a1, a2, a3, a4] = [0,0,0,0]
t=1,i=1
• Σka

kK(xk,x1) = 0x4+0x0+0x4+0x0 = 0, sign(0)=-1
• a1 += y1

 a1+=1, new a= [1,0,0,0]
t=1,i=2
• Σka

kK(xk,x2) = 1x0+0x4+0x0+0x4 = 0, sign(0)=-1
t=1,i=3
• Σka

kK(xk,x3) = 1x4+0x0+0x4+0x0 = 4, sign(4)=1
t=1,i=4
• Σka

kK(xk,x4) = 1x0+0x4+0x0+0x4 = 0, sign(0)=-1
t=2,i=1
• Σka

kK(xk,x1) = 1x4+0x0+0x4+0x0 = 4, sign(4)=1
…

Converged!!!
• y=Σk ak K(xk,x)

= 1×K(x1,x)+0×K(x2,x)+0×K(x3,x)+0×K(x4,x)
= K(x1,x)
= K([1,1],x) (because x1=[1,1])
= (x1+x2)2 (because K(u,v) = (uv)2)

• set ai=0 for each example i

• For t=1..T, i=1..n:
–

– if y ≠ yi

• ai += yi

K(u,v) = (uv)2

e.g.,
K(x1,x2)

= K([1,1],[-1,1])
= (1x-1+1x1)2

= 0

K x1 x2 x3 x4

x1 4 0 4 0

x2 0 4 0 4

x3 4 0 4 0

x4 0 4 0 4

Common kernels
• Polynomials of degree exactly d

• Polynomials of degree up to d

• Gaussian kernels

• Sigmoid

• And many others: very active area of research!

Kernels in logistic regression

• Define weights in terms of data points:

• Derive gradient descent rule on j,w0

• Similar tricks for all linear models: SVMs, etc

What you need to know

• The kernel trick

• Derive polynomial kernel

• Common kernels

• Kernelized perceptron

