CSE446: SVMs Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin, and Luke Zettelmoyer

Linear classifiers – Which line is better?

Pick the one with the largest margin!

How many possible solutions?

max γ, w, w_0 $\forall j. y^j (w \cdot x^j + w_0) > \gamma$ Any other ways of writing the

same dividing line?

- **w.x** + b = 0
- 2w.x + 2b = 0
- 1000 w.x + 1000 b = 0
 - ••••
- Any constant scaling has the same intersection with z=0 plane, so same dividing line!

Do we really want to max $_{\gamma,w,w0}$?

Assume: x^+ on positive line (y=1 intercept), x^- on negative (y=-1)

 $x^{+} = x^{-} + 2\gamma \frac{w}{\|w\|^{2}}$ $w \cdot x^+ + w_0 = 1$ $w \cdot (x^{-} + 2\gamma \frac{w}{\|w\|_{2}}) + w_{0} = 1$ $w \cdot x^{-} + w_{0} + 2\gamma \frac{w \cdot w}{\|w\|_{2}} = 1$ $\gamma \frac{w \cdot w}{\|w\|_2} = 1 \qquad w \cdot w = \sum_i w_i^2 = \|w\|_2^2$ $\gamma = \frac{\|w\|_2}{w \cdot w} = \frac{1}{\|w\|_2}$

Final result: can maximize *constrained* margin by minimizing $||w||_2!!!$

Max margin using canonical hyperplanes

Support vector machines (SVMs)

$\min_{\substack{w,w_0 \\ w,w_0}} \frac{1}{2} \|w\|_2^2 \text{ for } M^{j} \\ \forall j y^j (w \cdot x^j + w_0) \ge 1$

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close
- Decision boundary defined by support vectors

min 1/ 11WIL, « - lt wxip>> WN-2651 WN2-651 1+ WX206) 0 Wx3.6>1 - 1+ WY3tb 70 2, (WX,-b-1) + 22 (WX2+b-1) + $|/||w||_{2}$ MIN 23 (WXyrb-1) ථ

What if the data is not linearly separable?

Can use Kernels... (more on this later) What about overfitting?

What if the data is still not linearly separable?

 $\min_{w,w_0} \frac{1}{2} \|w\|_2^2 + C \# \text{(mistakes)}$ $y^{j}(w \cdot x^{j} + w_{0}) \ge 1$ First Idea: Jointly minimize $||w||_2^2$ and numbered training mistakes – How to tradeoff two criteria? Pick C on development / cross validation Tradeoff #(mistakes) and $||w||_2^2$

- 0/1 loss
- Not QP anymore
- Also doesn't distinguish near misses and really bad mistakes
- NP hard to find optimal solution!!!

Slack variables – Hinge loss 0 [-|| 11 **W.X** + W₀ **W.X** + W₀ **W.X** + W₀ : $\frac{1}{2} \|w\|_{2}^{2}$ $\min_{w,w_0}(\frac{1}{2})$ $+ \check{C} \check{\Sigma}_{i} \xi^{j}$ $\forall j. y^{j} (w \cdot x^{j} + w_{0}) \geq 1 - \xi^{j}, \xi^{j} \geq 0$ Slack Penalty C > 0: ♣ $C=\infty \rightarrow$ have to separate the data! ignore data entirely! Select on dev. set, etc.

For each data point:

- If margin ≥ 1, don't care
- If margin < 1, pay linear penalty

Slack variables – Hinge loss

Hinge loss is not differentiable, gradient ascent a little trickier...

Logistic Regression as Minimizing Loss

Logistic regression assumes:

$$f(x) = w_0 + \sum_i w_i x_i$$

$$P(Y = 1 | X = x) = \frac{\exp(f(x))}{1 + \exp(f(x))}$$
And tries to maximize data likelihood, for Y={-1,+1}:

$$P(y^i | x^i) = \frac{1}{1 + \exp(-y^i f(x^i))} \quad \ln P(\mathcal{D}_Y | \mathcal{D}_X, \mathbf{w}) = \sum_{j=1}^N \ln P(y^j | \mathbf{x}^j, \mathbf{w})$$
Equivalent to minimizing log loss:

$$\sum_{i=1}^N \ln(1 + \exp(-y^i f(x^i)))$$

Tradeoff: same l₂ regularization term, but different error term

Graphing Loss vs Margin

We want to smoothly approximate 0/1 loss!

What about multiple classes?

One against All

Learn 3 classifiers:

+ vs {0,-}, weights

 W_+

- vs {0,+}, weights w_
- 0 vs {+,-}, weights w₀
 Output for x:

╋

 $y = argmax_i w_i \bullet x$

0

0

0

0

Any problems? Could we learn this → dataset?

W- 717 W- X+0

Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights:

- How do we guarantee the correct labels?
- Need new
 constraints!

For each class:

$$w^{y^{j}} \cdot x^{j} + w_{0}^{y^{j}} \ge w^{y'} \cdot x^{j} + w_{0}^{y'} + 1, \quad \forall y' \ne y^{j}, \quad \forall j$$

Learn 1 classifier: Multiclass SVM Also, can introduce slack variables, as before: $\min_{w,w_0} \sum_{y} \|w^y\|_2^2 + C \sum_{j} \xi^j$ $w^{y^{j}} \cdot x^{j} + w_{0}^{y^{j}} \ge w^{y'} \cdot x^{j} + w_{0}^{y'} + 1 - \xi^{j}, \quad \forall y' \neq y^{j}, \quad \xi^{j} > 0 \quad \forall j$ Now, can we learn it? ╬ ÷

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs