CSE446: SVMs
Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin, and Luke Zettelmoyer
Linear classifiers - Which line is better?
Pick the one with the largest margin!

\[w \cdot x = \sum_i w_i x_i \]

Margin for point \(j \):

\[\gamma^j = y^j (w \cdot x^j + w_0) \]

Max Margin:

\[\max_{\gamma, w, w_0} \gamma \]

\[\forall j. y^j (w \cdot x^j + w_0) > \gamma \]
How many possible solutions?

\[
\begin{align*}
\max_{\gamma, w, w_0} & \quad \gamma \\
\forall j. y^j (w \cdot x^j + w_0) & > \gamma
\end{align*}
\]

Any other ways of writing the same dividing line?

- \(w \cdot x + b = 0 \)
- \(2w \cdot x + 2b = 0 \)
- \(1000w \cdot x + 1000b = 0 \)
-
- Any constant scaling has the same intersection with \(z=0 \) plane, so same dividing line!

Do we really want to max \(\gamma, w, w_0 \)?
Review: Normal to a plane

\[w \cdot x + w_0 = 0 \]

\[x^j = \bar{x}^j + \lambda \frac{w}{\|w\|_2} \]

Key Terms

- \(\bar{x}^j \) -- projection of \(x^j \) onto \(w \)
- \(\frac{w}{\|w\|_2} \) -- unit vector normal to \(w \)

\[\|w\|_2 = \sqrt{\sum_i w_i^2} \]
Assume: \(x^+ \) on positive line (\(y=1 \) intercept), \(x^- \) on negative (\(y=-1 \))

\[
\begin{align*}
 &x^+ = x^- + 2\gamma \frac{w}{\|w\|_2} \\
 &w \cdot x^+ + w_0 = 1 \\
 &w \cdot (x^- + 2\gamma \frac{w}{\|w\|_2}) + w_0 = 1 \\
 &w \cdot x^- + w_0 + 2\gamma \frac{w \cdot w}{\|w\|_2} = 1 \\
 &\gamma \frac{w \cdot w}{\|w\|_2} = 1 \\
 &w \cdot w = \sum_i w_i^2 = \|w\|_2^2 \\
 &\gamma = \frac{\|w\|_2}{w \cdot w} = \frac{1}{\|w\|_2}
\end{align*}
\]

Final result: can maximize constrained margin by minimizing \(\|w\|_2 \).
Max margin using canonical hyperplanes

The assumption of canonical hyperplanes (at +1 and -1) changes the objective and the constraints!

\[
\begin{align*}
\text{max}_{\gamma, w, w_0} & \quad \gamma \\
\forall j. y^j (w \cdot x^j + w_0) & > \gamma \\
\gamma & = \frac{1}{\|w\|_2} \\
\min_{w, w_0} & \quad \frac{1}{2} \|w\|_2^2 \\
\forall j. y^j (w \cdot x^j + w_0) & \geq 1
\end{align*}
\]
Support vector machines (SVMs)

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close

- Decision boundary defined by support vectors

\[
\min_{w,w_0} \frac{1}{2} \|w\|^2_2 \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1
\]

- Support Vectors:
 - data points on the canonical lines
- Non-support Vectors:
 - everything else
 - moving them will not change \(w \)
What if the data is not linearly separable?

Add More Features!!!

Can use Kernels... (more on this later)

What about overfitting?
What if the data is still not linearly separable?

\[
\min_{w,w_0} \frac{1}{2} \|w\|_2^2 + C \text{ #(mistakes)}
\]
\[
\forall j. y^j (w \cdot x^j + w_0) \geq 1
\]

• First Idea: Jointly minimize and number of training mistakes
 – How to tradeoff two criteria?
 – Pick \(C \) on development / cross validation

• Tradeoff \(\text{ #(mistakes)} \) and
 – 0/1 loss
 – Not QP anymore
 – Also doesn’t distinguish near misses and really bad mistakes
 – NP hard to find optimal solution!!!
Slack variables - Hinge loss

For each data point:

- If margin ≥ 1, don’t care
- If margin < 1, pay linear penalty

Slack Penalty $C > 0$:
- $C=\infty \rightarrow$ have to separate the data!
- $C=0 \rightarrow$ ignore data entirely!
- Select on dev. set, etc.

\[
\min_{w,w_0} \frac{1}{2} \|w\|^2 + C \sum_j \xi_j \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1 - \xi^j , \xi^j \geq 0
\]
Slack variables - Hinge loss

\[\begin{align*}
 w \cdot x + w_0 &= +1 \\
 w \cdot x + w_0 &= 0 \\
 w \cdot x + w_0 &= -1
\end{align*} \]

\[\begin{align*}
 \min_{w, w_0} & \frac{1}{2} \|w\|^2_2 + C \sum_j \xi_j \\
 \forall j. y^j (w \cdot x^j + w_0) & \geq 1 - \xi_j, \quad \xi_j \geq 0
\end{align*} \]

\[[x]_+ = \max(x, 0) \]

Solving SVMs:
- Differentiate and set equal to zero!
- No closed form solution, but quadratic program (top) is concave
- Hinge loss is not differentiable, gradient ascent a little trickier…

Regularization

Hinge Loss
Logistic Regression as Minimizing Loss

Logistic regression assumes:

\[f(x) = w_0 + \sum_i w_i x_i \]

\[P(Y = 1|X = x) = \frac{\exp(f(x))}{1 + \exp(f(x))} \]

And tries to maximize data likelihood, for \(Y = \{-1, +1\} \):

\[P(y^i|x^i) = \frac{1}{1 + \exp(-y^i f(x^i))} \]

\[\ln P(D_Y | D_X, w) = \sum_{j=1}^N \ln P(y^j | x^j, w) \]

\[= - \sum_{i=1}^N \ln(1 + \exp(-y^i f(x^i))) \]

Equivalent to minimizing log loss:

\[\sum_{i=1}^N \ln(1 + \exp(-y^i f(x^i))) \]
SVMs vs Regularized Logistic Regression

SVM Objective:

$$f(x) = w_0 + \sum_i w_i x_i$$

$$\arg \min_{w,w_0} \frac{1}{2} \|w\|_2^2 + C \sum_{j=1}^{N} [1 - y^j f(x^j)]_+$$

$[x]_+ = \max(x,0)$

Logistic regression objective:

$$\arg \min_{w,w_0} \lambda \|w\|_2^2 + \sum_{j=1}^{N} \ln(1 + \exp(-y^j f(x^j)))$$

Tradeoff: same l_2 regularization term, but different error term
Graphing Loss vs Margin

Logistic regression:

\[
\ln(1 + \exp(-y^j f(x^j)))
\]

Hinge loss:

\[
[1 - y^j f(x^j)]^+
\]

0-1 Loss:

\[
\delta(f(x^j) \neq y^j)
\]

We want to smoothly approximate 0/1 loss!
What about multiple classes?
One against All

Learn 3 classifiers:
- $+ \text{ vs } \{0,-\}$, weights w_+
- $- \text{ vs } \{0,+\}$, weights w_-
- $0 \text{ vs } \{+,-\}$, weights w_0

Output for x:
$$y = \arg\max_i w_i \cdot x$$

Any problems?
Could we learn this dataset?
Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights:

• How do we guarantee the correct labels?
• Need new constraints!

For each class:

\[w^{y_j} \cdot x^j + w_0^{y_j} \geq w^{y'} \cdot x^j + w_0^{y'} + 1, \quad \forall y' \neq y^j, \quad \forall j \]
Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:

$$\min_{\mathbf{w}, \mathbf{w}_0} \sum_y \| \mathbf{w}^y \|_2^2 + C \sum_j \xi^j$$

$$\mathbf{w}^y \cdot \mathbf{x}^j + \mathbf{w}_0^y \geq \mathbf{w}^y' \cdot \mathbf{x}^j + \mathbf{w}_0^y' + 1 - \xi^j, \quad \forall y' \neq y^j, \quad \xi^j > 0 \quad \forall j$$

Now, can we learn it?
What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs