CSE446: Perceptron Spring 2017

Ali Farhadi Hessam Bagherinezhad

Slides adapted from Dan Klein, Luke Zettlemoyer

Who needs probabilities?

- Previously: model data with distributions
- Joint: P(X,Y)
 - e.g. Naïve Bayes
- Conditional: P(Y|X)
 - e.g. Logistic Regression
- But wait, why probabilities?
- Lets try to be errordriven!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	make
aood	4	97	75	2265	18.2	77	asia
good							
bad	6	199	90	2648	15	70	amer
bad	4	121	110	2600	12.8	77	europ
bad	8	350	175	4100	13	73	amei
bad	6	198	95	3102	16.5	74	amei
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	amer
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	amei
bad	8	455	225	4425	10	70	amei
good	4	107	86	2464	15.5	76	euro
bad	5	131	103	2830	15.9	78	euro

Generative vs. Discriminative

- Generative classifiers:
 - E.g. naïve Bayes
 - A joint probability model with evidence variables
 - Query model for causes given evidence
- Discriminative classifiers:
 - No generative model, no Bayes rule, maybe no probabilities at all!
 - Try to predict the label Y directly from X
 - Robust, accurate with varied features
 - Loosely: mistake driven rather than model driven

Discriminative vs. generative

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation_w(x) =
$$\sum_{i} w_i x_i = w \cdot x$$

- If the activation is:
 - Positive, output *class 1*
 - Negative, output class 2

Example: Spam

- Imagine 3 features (spam is "positive" class):
 - free (number of occurrences of "free")
 - money (occurrences of "money")
 - BIAS (intercept, always has value 1)

w•x > 0 → SPAM!!!

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to y=+1
 - Other corresponds to y=-1

BIAS	:	-3
free	:	4
money	:	2
•••		

Binary Perceptron Algorithm

- Start with zero weights: w=0
- For t=1..T (T passes over data)
 - For i=1..n: (each training example)
 - Classify with current weights $y = sign(w \cdot x^i)$ - sign(x) is +1 if x>0, else -1
 - If correct (i.e., y=yⁱ), no change!
 - If wrong: update

$$w = w + y^i x^i$$

	x^i
$w + (-1)x^i$	

• For t=1..T, i=1..n:
-
$$y = sign(w \cdot x^i)$$

- if y \neq yⁱ
 $w = w + y^i x^i$

Initial:

• w = [0,0]

t=1,i=1

- [0,0]•[3,2] = 0, sign(0)=-1
- w = [0,0] + [3,2] = [3,2]

t=1,i=2

- [3,2]•[-2,2]=-2, sign(-2)=-1 t=1,i=3
- [3,2]•[-2,-3]=-12, sign(-12)=-1
- w = [3,2] + [-2,-3] = [1,-1] t=2,i=1
- [1,-1]•[3,2]=1, sign(1)=1 t=2,i=2
- [1,-1]•[-2,2]=-4, sign(-4)=-1 t=2,i=3
- [1,-1]•[-2,-3]=1, sign(1)=1

Converged!!!

• $y=w_1x_1+w_2x_2 \rightarrow y=x_1+-x_2$

• So, at y=0
$$\rightarrow$$
 x₂=x₁

Multiclass Decision Rule

- If we have more than two classes:
 - Have a weight vector for each class: w_y
 - Calculate an activation for each class

activation_w
$$(x, y) = w_y \cdot x$$

Highest activation wins

$$y^* = \arg\max_y(\operatorname{activation}_w(x, y))$$

Example: y is {1,2,3}

- We are fitting three planes: w_1 , w_2 , w_3
- Predict i when $w_i \bullet x$ is highest

 $x \cdot w_{SPORTS} = 2$

 $x \cdot w_{POLITICS} = 7$

 $x \cdot w_{TECH} = 2$

POLITICS wins!!!

The Multi-class Perceptron Alg.

 x^{\prime}

- Start with zero weights
- For t=1..T, i=1..n (T times over data)
 - Classify with current weights

$$y = \arg\max_{y} w_y \cdot$$

– If correct (y=y_i), no change!

• If wrong: subtract features x^i from weights for predicted class w_y and add them to weights for correct class w_{y_i}

$$w_y = w_y - x^i$$
$$w_{y^i} = w_{y^i} + x^i$$

Perceptron vs. logistic regression

Update rule

• Logistic regression:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

- Need all of training data
- Perceptron:

if mistake,
$$w=w+y^ix^i$$

- Update only with one example.
- Ideal for online algorithms.

Linearly Separable (binary case)

• The data is linearly separable with *margin* γ , if:

$$\exists w. \forall t. y^t (w \cdot x^t) \ge \gamma > 0$$

- For yt=1 $w \cdot x^t \geq \gamma$
- For yt=-1 $w \cdot x^t \leq -\gamma$

Mistake Bound for Perceptron

• Assume data is separable with margin γ:

 $\exists w^* \text{ s.t. } \|w^*\|_2 = 1 \text{ and } \forall t.y^t(w^* \cdot x^t) \ge \gamma$

• Also assume there is a number R such that:

$$\forall t. \|x^t\|_2 \le R$$

• Theorem: The number of mistakes (parameter updates) made by the perceptron is bounded:

$$mistakes \leq \frac{R^2}{\gamma^2}$$

Constant with respect to # of examples!

$$\|x\|_2 = \sqrt{\sum_i x_i^2}$$

Perceptron Convergence (by Induction)

 Let w^k be the weights after the k-th update (mistake), we will show that:

$$k^{2}\gamma^{2} \le \|w^{k}\|_{2}^{2} \le kR^{2}$$

• Therefore:

$$k \le \frac{R^2}{\gamma^2}$$

- Because R and γ are fixed constants that do not change as you learn, there are a finite number of updates!
- Proof does each bound separately (next two slides)

Lower bound

- $w = w + y^t x^t$ Remember our margin assumption: $\exists w^* \text{ s.t. } \|w^*\|_2 = 1 \text{ and } \forall t.y^t(w^* \cdot x^t) \geq \gamma$
- Now, by the definition of the perceptron update, for k-th mistake on t-th training example:

$$w^{k+1} \cdot w^* = (w^k + y^t x^t) \cdot w^*$$

= $w^k \cdot w^* + y^t (w^* \cdot x^t)$
 $\geq w^k \cdot w^* + \gamma$

So, by induction with $w^0=0$, for all k: $k\gamma < w^k \cdot w^*$ $\leq \|w^k\|_2$ $k^2 \gamma^2 \le \|w^k\|_2^2$

Because: $w^k \cdot w^* \le \|w^k\|_2 \times \|w^*\|_2$ and $||w^*||_2 = 1$

Perceptron update:

Upper Bound

Perceptron update:

$$w = w + y^t x^t$$

Data Assumption: $\forall t. \|x^t\|_2 \leq R$

 By the definition of the Perceptron update, for k-th mistake on t-th training example:

$$\begin{split} \|w^{k+1}\|_{2}^{2} &= \|w^{k} + y^{t}x^{t}\|_{2}^{2} \\ &= \|w^{k}\|_{2}^{2} + (y^{t})^{2}\|x^{t}\|_{2}^{2} + 2y^{t}x^{t} \cdot w^{k} \\ &\leq \|w^{k}\|_{2}^{2} + R^{2} \end{split}$$

- So, by induction with w_0 =0 have, for all k: $\|w_k\|_2^2 \leq kR^2$
- < () because Perceptron made error (y^t has different sign than x^t•w^t)

Perceptron Convergence (by Induction)

 Let w^k be the weights after the k-th update (mistake), we will show that:

$$k^{2}\gamma^{2} \le \|w^{k}\|_{2}^{2} \le kR^{2}$$

D

Therefore:

$$k \le \frac{R^2}{\gamma^2}$$

- Because R and γ are fixed constants that do not change as you learn, there are a finite number of updates!
- If there is a linear separator, Perceptron will find it!!!

From Logistic Regression to the Perceptron: 2 easy steps!

Perceptron update when y is {-1,1}:
$$w = w + y^j x^j$$

• Logistic Regression: (in vector notation): y is {0,1}

$$w = w + \eta \sum_{j} [y^j - P(y^j | x^j, w)] x^j$$

• Perceptron: when y is {0,1}:

$$w = w + [y^j - sign^0(w \cdot x^j)]x^j$$

sign⁰(x) = +1 if x>0 and 0 otherwise

Differences?

- Drop the Σ_j over training examples: online vs. batch learning
- Drop the dist'n: probabilistic vs. error driven learning

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the *margin* or degree of separability

$$mistakes \le \frac{R^2}{\gamma^2}$$

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Linear Separators

Which of these linear separators is optimal?

Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Support vector machines (SVMs) find the separator with max margin

SVM

$$\min_{w} \frac{1}{2} ||w||^2$$

$$\forall i, y \ w_{y^*} \cdot x^i \ge w_y \cdot x^i + 1$$

Three Views of Classification (more to come later in course!) Training Data Held-Out Data Test Data

Naïve Bayes:

- Parameters from data statistics
- Parameters: probabilistic interpretation
- Training: one pass through the data
- Logistic Regression:
 - Parameters from gradient ascent
 - Parameters: linear, probabilistic model, and discriminative
 - Training: gradient ascent (usually batch), regularize to stop overfitting

• The perceptron:

- Parameters from reactions to mistakes
- Parameters: discriminative interpretation
- Training: go through the data until heldout accuracy maxes out