Who needs probabilities?

- **Previously:** model data with distributions
- **Joint:** $P(X,Y)$
 - e.g. Naïve Bayes
- **Conditional:** $P(Y|X)$
 - e.g. Logistic Regression
- **But wait, why probabilities?**
- **Lets try to be error-driven!**
Generative vs. Discriminative

• Generative classifiers:
 – E.g. naïve Bayes
 – A joint probability model with evidence variables
 – Query model for causes given evidence

• Discriminative classifiers:
 – No generative model, no Bayes rule, maybe no probabilities at all!
 – Try to predict the label Y directly from X
 – Robust, accurate with varied features
 – Loosely: mistake driven rather than model driven
Discriminative vs. generative

- **Generative model**

 (The artist)

- **Discriminative model**

 (The lousy painter)

- **Classification function**

```plaintext
\[
\text{label} = F_{\text{Zebra}}(\text{Data})
\]"
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$\text{activation}_w(x) = \sum_i w_i x_i = w \cdot x$$

- If the activation is:
  - Positive, output class 1
  - Negative, output class 2
Example: Spam

- Imagine 3 features (spam is “positive” class):
  - free (number of occurrences of “free”)
  - money (occurrences of “money”)
  - BIAS (intercept, always has value 1)

```
+--------+-----------------+-----------------+
| | BIAS | free |
+--------+-----------------+-----------------+
x	BIAS	free
	free	money
	money	
	1	1
	1	1
	1	1

 "free money"

```

\[
\begin{align*}
\mathbf{w} & = \begin{bmatrix} (1)(-3) \\ (1)(4) \\ (1)(2) \end{bmatrix} \\
\mathbf{x} & = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
\end{align*}
\]

\[
\mathbf{w} \cdot \mathbf{x} = 3
\]

\[w \cdot x > 0 \implies \text{SPAM}!!!\]
Binary Decision Rule

- In the space of feature vectors
  - Examples are points
  - Any weight vector is a hyperplane
  - One side corresponds to $y=+1$
  - Other corresponds to $y=-1$

$$w$$

<table>
<thead>
<tr>
<th>BIAS</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>free</td>
<td>4</td>
</tr>
<tr>
<td>money</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

$$w \cdot x = 0$$
Binary Perceptron Algorithm

- Start with zero weights: \( w = 0 \)
- For \( t = 1 \ldots T \) (\( T \) passes over data)
  - For \( i = 1 \ldots n \): (each training example)
    - Classify with current weights
      \[ y = \text{sign}(w \cdot x^i) \]
      - \( \text{sign}(x) \) is +1 if \( x > 0 \), else -1
    - If correct (i.e., \( y = y^i \)), no change!
    - If wrong: update
      \[ w = w + y^i x^i \]
• For t=1..T, i=1..n:
  – \( y = \text{sign}(w \cdot x^i) \)
  – if \( y \neq y^i \)
    \[ w = w + y^i x^i \]

<table>
<thead>
<tr>
<th>( x_1 )</th>
<th>( x_2 )</th>
<th>( y )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-2</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
<td>-3</td>
<td>1</td>
</tr>
</tbody>
</table>

Initial:
• \( w = [0,0] \)
  t=1, i=1
• \([0,0] \cdot [3,2] = 0\), sign(0)=-1
• \( w = [0,0] + [3,2] = [3,2] \)
  t=1, i=2
• \([3,2] \cdot [-2,2] = -2\), sign(-2)=-1
  t=1, i=3
• \([3,2] \cdot [-2,-3] = -12\), sign(-12)=-1
• \( w = [3,2] + [-2,-3] = [1,-1] \)
  t=2, i=1
• \([1,-1] \cdot [3,2] = 1\), sign(1)=1
  t=2, i=2
• \([1,-1] \cdot [-2,2] = -4\), sign(-4)=-1
  t=2, i=3
• \([1,-1] \cdot [-2,-3] = 1\), sign(1)=1

Converged!!!
• \( y = w_1 x_1 + w_2 x_2 \rightarrow y = x_1 - x_2 \)
• So, at \( y = 0 \rightarrow x_2 = x_1 \)
Multiclass Decision Rule

- If we have more than two classes:
  - Have a weight vector for each class: \( w_y \)
  - Calculate an activation for each class

\[
activation_w(x, y) = w_y \cdot x
\]

- Highest activation wins

\[
y^* = \arg \max_y(activation_w(x, y))
\]

Example: \( y \) is \{1,2,3\}
- We are fitting three planes: \( w_1, w_2, w_3 \)
- Predict \( i \) when \( w_i \cdot x \) is highest
Example

“win the vote”

\[ x \]

\[
\begin{array}{l}
\text{BIAS} : 1 \\
\text{win} : 1 \\
\text{game} : 0 \\
\text{vote} : 1 \\
\text{the} : 1 \\
\ldots \\
\end{array}
\]

\[
\begin{array}{l}
\text{BIAS} : -2 \\
\text{win} : 4 \\
\text{game} : 4 \\
\text{vote} : 0 \\
\text{the} : 0 \\
\ldots \\
\end{array}
\]

\[
\begin{array}{l}
\text{BIAS} : 1 \\
\text{win} : 2 \\
\text{game} : 0 \\
\text{vote} : 4 \\
\text{the} : 0 \\
\ldots \\
\end{array}
\]

\[
\begin{array}{l}
\text{BIAS} : 2 \\
\text{win} : 0 \\
\text{game} : 2 \\
\text{vote} : 0 \\
\text{the} : 0 \\
\ldots \\
\end{array}
\]

\[
x \cdot w_{SPORTS} = 2
\]

\[
x \cdot w_{POLITICS} = 7
\]

\[
x \cdot w_{TECH} = 2
\]

POLITICS wins!!!
The Multi-class Perceptron Alg.

- Start with zero weights
- For $t=1..T$, $i=1..n$ (T times over data)
  - Classify with current weights
    $$y = \arg \max_{y} w_y \cdot x^i$$
  - If correct ($y=y_i$), no change!
- If wrong: subtract features $x^i$ from weights for predicted class $w_y$ and add them to weights for correct class $w_{y_i}$
  $$w_y = w_y - x^i$$
  $$w_{y_i} = w_{y_i} + x^i$$
Perceptron vs. logistic regression

• Logistic regression:

\[ w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid x^j, \mathbf{w})] \]

  – Need all of training data

• Perceptron:

  if mistake, \[ \mathbf{w} = \mathbf{w} + y^i x^i \]

  – Update only with one example.
  – Ideal for online algorithms.
Linearly Separable (binary case)

- The data is linearly separable with margin $\gamma$, if:

$$\exists w. \forall t. y^t (w \cdot x^t) \geq \gamma > 0$$

- For $y^t=1$
  $$w \cdot x^t \geq \gamma$$
- For $y^t=-1$
  $$w \cdot x^t \leq -\gamma$$
Mistake Bound for Perceptron

\[ \|x\|_2 = \sqrt{\sum_i x_i^2} \]

- Assume data is separable with margin \( \gamma \):
  \[ \exists w^* \text{ s.t. } \|w^*\|_2 = 1 \text{ and } \forall t. y^t(w^* \cdot x^t) \geq \gamma \]

- Also assume there is a number \( R \) such that:
  \[ \forall t. \|x^t\|_2 \leq R \]

- **Theorem**: The number of mistakes (parameter updates) made by the perceptron is bounded:
  \[ \text{mistakes} \leq \frac{R^2}{\gamma^2} \]

*Constant with respect to # of examples!*
Perceptron Convergence (by Induction)

- Let $w^k$ be the weights after the $k$-th update (mistake), we will show that:

$$k^2 \gamma^2 \leq \|w^k\|_2^2 \leq kR^2$$

- Therefore:

$$k \leq \frac{R^2}{\gamma^2}$$

- Because $R$ and $\gamma$ are fixed constants that do not change as you learn, there are a finite number of updates!

- Proof does each bound separately (next two slides)
Lower bound

- Remember our margin assumption:
  \[ \exists w^* \text{ s.t. } \|w^*\|_2 = 1 \text{ and } \forall t. y^t (w^* \cdot x^t) \geq \gamma \]

- Now, by the definition of the perceptron update, for k-th mistake on \( t \)-th training example:
  \[ w^{k+1} \cdot w^* = (w^k + y^t x^t) \cdot w^* \]
  \[ = w^k \cdot w^* + y^t (w^* \cdot x^t) \]
  \[ \geq w^k \cdot w^* + \gamma \]

- So, by induction with \( w^0 = 0 \), for all \( k \):
  \[ k \gamma \leq w^k \cdot w^* \]
  \[ \leq \|w^k\|_2 \]
  \[ k^2 \gamma^2 \leq \|w^k\|_2^2 \]

Perceptron update:
\[ w = w + y^t x^t \]

Because:
\[ w^k \cdot w^* \leq \|w^k\|_2 \times \|w^*\|_2 \]
and \( \|w^*\|_2 = 1 \)
Upper Bound

- By the definition of the Perceptron update, for k-th mistake on t-th training example:

\[
\|w^{k+1}\|_2^2 = \|w^k + y^t x^t\|_2^2
= \|w^k\|_2^2 + (y^t)^2 \|x^t\|_2^2 + 2y^t x^t \cdot w^k
\leq \|w^k\|_2^2 + R^2
\leq 0 \text{ because Perceptron made error (}y^t\text{ has different sign than }x^t\cdot w^t\text{)}
\]

\[
\therefore \forall t. \|x^t\|_2 \leq R
\]

- So, by induction with \(w_0=0\) have, for all k:

\[
\|w_k\|_2^2 \leq kR^2
\]
Perceptron Convergence (by Induction)

- Let \( w^k \) be the weights after the k-th update (mistake), we will show that:

\[
k^2 \gamma^2 \leq \| w^k \|_2^2 \leq k R^2
\]

- Therefore:

\[
k \leq \frac{R^2}{\gamma^2}
\]

- Because R and \( \gamma \) are fixed constants that do not change as you learn, there are a finite number of updates!

- If there is a linear separator, Perceptron will find it!!!
From Logistic Regression to the Perceptron: 2 easy steps!

- Logistic Regression: (in vector notation): \( y \) is \( \{0,1\} \)
  \[
  w = w + \eta \sum_j [y^j - P(y^j | x^j, w)] x^j
  \]

- Perceptron: when \( y \) is \( \{0,1\} \):
  \[
  w = w + [y^j - \text{sign}^0 (w \cdot x^j)] x^j
  \]
  - \( \text{sign}^0(x) = +1 \) if \( x > 0 \) and \( 0 \) otherwise

Differences?

- Drop the \( \Sigma_j \) over training examples: online vs. batch learning
- Drop the dist’n: probabilistic vs. error driven learning

Perceptron update when \( y \) is \( \{-1,1\} \):
\[
    w = w + y^j x^j
\]
Properties of Perceptrons

- **Separability**: some parameters get the training set perfectly correct.
- **Convergence**: if the training is separable, perceptron will eventually converge (binary case).
- **Mistake Bound**: the maximum number of mistakes (binary case) related to the *margin* or degree of separability.

\[ \text{mistakes} \leq \frac{R^2}{\gamma^2} \]
Problems with the Perceptron

- **Noise:** if the data isn’t separable, weights might thrash
  - Averaging weight vectors over time can help (averaged perceptron)

- **Mediocre generalization:** finds a “barely” separating solution

- **Overtraining:** test / held-out accuracy usually rises, then falls
  - Overtraining is a kind of overfitting
Linear Separators

Which of these linear separators is optimal?
Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Support vector machines (SVMs) find the separator with max margin

\[
\min_w \frac{1}{2} ||w||^2 \\
\forall i, y \ w_y * x_i \geq w_y \cdot x_i + 1
\]
Three Views of Classification
(more to come later in course!)

• Naïve Bayes:
  – Parameters from data statistics
  – Parameters: probabilistic interpretation
  – Training: one pass through the data

• Logistic Regression:
  – Parameters from gradient ascent
  – Parameters: linear, probabilistic model, and discriminative
  – Training: gradient ascent (usually batch), regularize to stop overfitting

• The perceptron:
  – Parameters from reactions to mistakes
  – Parameters: discriminative interpretation
  – Training: go through the data until held-out accuracy maxes out