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Your first consulting job
• A billionaire from the suburbs of Seattle asks you a question:

– He says: I have thumbtack, if I flip it, what’s the probability it will 
fall with the nail up?

– You say: Please flip it a few times:

– You say: The probability is:
• P(H) = 3/5

– He says: Why???
– You say: Because…



Thumbtack – Binomial Distribution

• P(Heads) = ,  P(Tails) = 1-

• Flips are i.i.d.: 
– Independent events
– Identically distributed according to Binomial 

distribution

• Sequence D of H Heads and T Tails  

…

D={xi | i=1…n},  P(D | θ ) = ΠiP(xi | θ )



Maximum Likelihood Estimation
• Data: Observed set D of H Heads and T Tails  
• Hypothesis space: Binomial distributions 
• Learning: finding is an optimization problem

– What’s the objective function?

• MLE: Choose  to maximize probability of D



Your first parameter learning algorithm

• Set derivative to zero, and solve!



But, how many flips do I need?

• Billionaire says: I flipped 3 heads and 2 tails.
• You say:  = 3/5, I can prove it!
• He says: What if I flipped 30 heads and 20 tails?
• You say: Same answer, I can prove it!
• He says: What’s better?
• You say: Umm… The more the merrier???
• He says: Is this why I am paying you the big bucks???
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A bound  (from Hoeffding’s inequality)

• For N =H+T, and

• Let  
* be the true parameter, for any >0:



PAC Learning
• PAC: Probably Approximate Correct
• Billionaire says: I want to know the thumbtack , 

within  = 0.1, with probability at least 1- = 0.95. 
• How many flips? Or, how big do I set N ?

Interesting! Lets look at 
some numbers!
•  = 0.1, 



What if I have prior beliefs? 
• Billionaire says: Wait, I know that the thumbtack 

is “close” to 50-50. What can you do for me now?
• You say: I can learn it the Bayesian way…
• Rather than estimating a single , we obtain a 

distribution over possible values of 

In the beginning After observations
Observe flips

e.g.: {tails, tails}



Bayesian Learning
• Use Bayes rule:

• Or equivalently:

• Also, for uniform priors:

Prior

Normalization

Data Likelihood

Posterior

 reduces to MLE objective



Bayesian Learning for Thumbtacks

Likelihood function is Binomial:

• What about prior?
– Represent expert knowledge
– Simple posterior form

• Conjugate priors:
– Closed-form representation of posterior
– For Binomial, conjugate prior is Beta distribution



Beta prior distribution – P()

• Likelihood function:
• Posterior:



Posterior distribution
• Prior:
• Data: H heads and T tails

• Posterior distribution: 



MAP for Beta distribution

• MAP: use most likely parameter:

• Beta prior equivalent to extra thumbtack flips
• As N → ∞, prior is “forgotten”
• But, for small sample size, prior is important!



What about continuous variables?

• Billionaire says: If I am 
measuring a 
continuous variable, 
what can you do for 
me?

• You say: Let me tell 
you about Gaussians…



Some properties of Gaussians

• Affine transformation (multiplying by 
scalar and adding a constant) are Gaussian
– X ~ N(,2)
– Y = aX + b  Y ~ N(a+b,a22)

• Sum of Gaussians is Gaussian
– X ~ N(X,2X)
– Y ~ N(Y,2Y)
– Z = X+Y   Z ~ N(X+Y, 2X+2Y)

• Easy to differentiate, as we will see soon!



Learning a Gaussian
• Collect a bunch of data

– Hopefully, i.i.d. samples
– e.g., exam scores

• Learn parameters
– Mean: μ
– Variance: σ

xi

i =

Exam 
Score

0 85

1 95

2 100

3 12

… …
99 89



MLE for Gaussian:

• Prob. of i.i.d. samples D={x1,…,xN}:

• Log-likelihood of data:



Your second learning algorithm:
MLE for mean of a Gaussian

• What’s MLE for mean?



MLE for variance
• Again, set derivative to zero:



Learning Gaussian parameters

• MLE:

• BTW. MLE for the variance of a Gaussian is biased
– Expected result of estimation is not true parameter! 
– Unbiased variance estimator:



Bayesian learning of Gaussian 
parameters

• Conjugate priors
– Mean: Gaussian prior
– Variance: Wishart Distribution

• Prior for mean:
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