Your first consulting job

• A billionaire from the suburbs of Seattle asks you a question:
 – He says: I have thumbtack, if I flip it, what’s the probability it will fall with the nail up?
 – You say: Please flip it a few times:

 ![Thumbtack images]

 – You say: The probability is:
 • $P(H) = \frac{3}{5}$

 – He says: Why???
 – You say: Because...
Thumbtack – Binomial Distribution

- $P(\text{Heads}) = \theta$, $P(\text{Tails}) = 1-\theta$

- Flips are \textit{i.i.d.}:

 $D = \{x_i | i=1...n\}$, $P(D | \theta) = \prod_i P(x_i | \theta)$

 – Independent events

 – Identically distributed according to Binomial distribution

- Sequence D of α_H Heads and α_T Tails

\[
P(D | \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}
\]
Maximum Likelihood Estimation

• **Data:** Observed set D of α_H Heads and α_T Tails

• **Hypothesis space:** Binomial distributions

• **Learning:** finding θ is an optimization problem
 – What’s the objective function?
 \[P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

• **MLE:** Choose θ to maximize probability of D

 \[\hat{\theta} = \arg \max_{\theta} P(D \mid \theta) \]
 \[= \arg \max_{\theta} \ln P(D \mid \theta) \]
Your first parameter learning algorithm

\[\hat{\theta} = \arg \max_\theta \ln P(\mathcal{D} | \theta) \]

\[= \arg \max_\theta \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

- Set derivative to zero, and solve!

\[
\frac{d}{d\theta} \ln P(\mathcal{D} | \theta) = \frac{d}{d\theta} [\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}] \\
= \frac{d}{d\theta} [\alpha_H \ln \theta + \alpha_T \ln(1 - \theta)] \\
= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta) \\
= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \\
\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]
But, how many flips do I need?

\[\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: \(\theta = \frac{3}{5} \), I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- **He says: What’s better?**
- You say: Umm... The more the merrier???
- He says: Is this why I am paying you the big bucks???
A bound (from Hoeffding’s inequality)

- For \(N = \alpha_H + \alpha_T \), and \(\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \)

- Let \(\theta^* \) be the true parameter, for any \(\epsilon > 0 \):

\[
P(|\hat{\theta} - \theta^*| \geq \epsilon) \leq 2e^{-2N\epsilon^2}
\]
PAC Learning

• **PAC:** Probably Approximately Correct

• **Billionaire says:** I want to know the thumbtack \(\theta \), within \(\epsilon = 0.1 \), with probability at least \(1 - \delta = 0.95 \).

• **How many flips?** Or, how big do I set \(N \)?

\[
P(| \hat{\theta} - \theta^* | \geq \epsilon) \leq 2e^{-2N\epsilon^2}
\]

\[
\delta \geq 2e^{-2N\epsilon^2} \geq P(\text{mistake})
\]

\[
\ln \delta \geq \ln 2 - 2N\epsilon^2
\]

\[
N \geq \frac{\ln(2/\delta)}{2\epsilon^2}
\]

Interesting! Let's look at some numbers!

• \(\epsilon = 0.1, \delta = 0.05 \)

\[
N \geq \frac{\ln(2/0.05)}{2 \times 0.1^2} \approx \frac{3.8}{0.02} = 190
\]
What if I have prior beliefs?

• Billionaire says: Wait, I know that the thumbtack is “close” to 50-50. What can you do for me now?

• You say: I can learn it the Bayesian way...

• Rather than estimating a single θ, we obtain a distribution over possible values of θ
Bayesian Learning

- Use Bayes rule:

\[P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})} \]

- Or equivalently:

\[P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta) \]

- Also, for uniform priors:

 \[P(\theta) \propto 1 \quad P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) \]
Bayesian Learning for Thumbtacks

\[P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta) \]

Likelihood function is Binomial:

\[P(\mathcal{D} \mid \theta) = \theta^H (1 - \theta)^T \]

• What about prior?
 – Represent expert knowledge
 – Simple posterior form

• Conjugate priors:
 – Closed-form representation of posterior
 – For Binomial, conjugate prior is Beta distribution
Beta prior distribution – $P(\theta)$

\[P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim \text{Beta}(\beta_H, \beta_T) \]

- Likelihood function: \(P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \)
- Posterior: \(P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta) \)

\[
P(\theta \mid \mathcal{D}) \propto \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}
\]

\[
= \theta^{\alpha_H + \beta_H - 1} (1 - \theta)^{\alpha_T + \beta_T - 1}
\]

\[
= \text{Beta}(\alpha_H + \beta_H, \alpha_T + \beta_T)
\]
Posterior distribution

- Prior: $Beta(\beta_H, \beta_T)$
- Data: α_H heads and α_T tails
- Posterior distribution:

$$P(\theta \mid D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$
MAP for Beta distribution

\[
P(\theta \mid D) = \frac{\theta^{\beta_H + \alpha_H - 1}(1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T)
\]

• MAP: use most likely parameter:

\[
\hat{\theta} = \arg \max_{\theta} P(\theta \mid D) = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}
\]

• Beta prior equivalent to extra thumbtack flips
• As \(N \rightarrow \infty \), prior is “forgotten”
• But, for small sample size, prior is important!
What about continuous variables?

• Billionaire says: If I am measuring a continuous variable, what can you do for me?
• You say: Let me tell you about Gaussians...

\[
P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
Some properties of Gaussians

• **Affine transformation (multiplying by scalar and adding a constant) are Gaussian**

 \[X \sim N(\mu, \sigma^2) \]

 \[Y = aX + b \square Y \sim N(a\mu+b, a^2\sigma^2) \]

• **Sum of Gaussians is Gaussian**

 \[X \sim N(\mu_x, \sigma_x^2) \]

 \[Y \sim N(\mu_y, \sigma_y^2) \]

 \[Z = X+Y \square Z \sim N(\mu_x+\mu_y, \sigma_x^2+\sigma_y^2) \]

• **Easy to differentiate, as we will see soon!**
Learning a Gaussian

• Collect a bunch of data
 – Hopefully, i.i.d. samples
 – e.g., exam scores

• Learn parameters
 – Mean: μ
 – Variance: σ

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

<table>
<thead>
<tr>
<th>x_i</th>
<th>Exam Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>99</td>
<td>89</td>
</tr>
</tbody>
</table>
MLE for Gaussian:

\[P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

- Prob. of i.i.d. samples \(D = \{ x_1, \ldots, x_N \} \):

\[
P(D \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}
\]

\[
\mu_{MLE}, \sigma_{MLE} = \arg \max_{\mu, \sigma} P(D \mid \mu, \sigma)
\]

- Log-likelihood of data:

\[
\ln P(D \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^{N} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} \right]
\]

\[
= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}
\]
Your second learning algorithm:
MLE for mean of a Gaussian

• What’s MLE for mean?

\[
\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]

\[
= \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]

\[
= - \sum_{i=1}^{N} \frac{(x_i - \mu)}{\sigma^2} = 0
\]

\[
= - \sum_{i=1}^{N} x_i + N\mu = 0
\]

\[
\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i
\]
MLE for variance

\[
\frac{d}{d\sigma} \ln P(D \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]

\[
= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]

\[
= -\frac{N}{\sigma} + \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^3} \quad = 0
\]

\[
\hat{\sigma}^2_{MLE} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2
\]
Learning Gaussian parameters

• MLE:

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}^2_{MLE} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

• BTW. MLE for the variance of a Gaussian is **biased**
 – Expected result of estimation is **not** true parameter!
 – Unbiased variance estimator:

$$\hat{\sigma}^2_{unbiased} = \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$
Bayesian learning of Gaussian parameters

• Conjugate priors
 – Mean: Gaussian prior
 – Variance: Wishart Distribution

• Prior for mean:

\[P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{-\frac{(\mu-\eta)^2}{2\lambda^2}} \]