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Your first consulting job

* A billionaire from the suburbs of Seattle asks you a question:

— He says: | have thumbtack, if | flip it, what’s the probability it will
fall with the nail up?

— You say: Please flip it a few times:

OA0PO

— You say: The probability is:
* P(H) = 3/5

—He says: Why???
— You say: Because...




Thumbtack - Binomial Distribution
* P(Heads) =0, P(Tails) = 1-6

* Flips arei.i.d.: D={x|i=1...n}, P(D|0)=TI1P(x|6)
— Independent events

— |dentically distributed according to Binomial
distribution

* Sequence D of o, Heads and o Tails

P(D|0) =0%H(1—0)T



Maximum Likelihood Estimation

Data: Observed set D of o, Heads and o Tails

Hypothesis space: Binomial distributions

Learning: finding 0 is an optimization problem
— What’s the objective function?

P(D|0) =0%(1—0)%T

MLE: Choose 06 to maximize probability of D

AN

0

= arg m@ax P(D|6)
= arg m@ax In P(D | 9)



Your first parameter learning algorithm

h = argm@ax In P(D | 0)
= argm@ax INGH(1 — 6)T

* Set derivative to zero, and solve!
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But, how many flips do | need?

;1
Qg+ ar

OviLE =

Billionaire says: | flipped 3 heads and 2 tails.
You say: 6 = 3/5, | can prove it!

He says: What if | flipped 30 heads and 20 tails?
You say: Same answer, | can prove it!

He says: What's better?

You say: Umm... The more the merrier???
He says: Is this why | am paying you the big bucks???



A bound (from Hoeffding’s inequality)

;1
Qg+ ar

e ForN=o,+a,and Oy g =

* Let 6" be the true parameter, for any £>0:

P(|§—0"|>e) < 2e 2Ne

Exponential
Decay!

_Prob. of Mistake




PAC Learning

* PAC: Probably Approximate Correct

* Billionaire says: | want to know the thumbtack 9,
within € = 0.1, with probability at least 1-0 = 0.95.

* How many flips? Or, how bigdo | set N?

P(|G—0"|>e) < 20 2N€

—2N€2> |
0 > 2e > P(mistake) Interesting! Lets look at

INd > In2 — 2N¢€? some numbers!

n(2/6) + £=0.1, 5=0.05
N = n2 > v~ In2/0.05) 3.8
¢ = 2x012 T 0.02

= 190




What if | have prior beliefs?

* Billionaire says: Wait, | know that the thumbtack
is “close” to 50-50. What can you do for me now?

* You say: | can learn it the Bayesian way...

* Rather than estimating a single 8, we obtain a
distribution over possible values of 0

In the beginning After observations
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| e.q.: {talls, tails}
go.a— 1 >

1.5¢
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Bayesian Learning

SUPNT ~ Prior
* Use Bayes rule: Data |_Ilke|lh00d :
\v L/ ﬁ
PO D) = (D 16)P(0)
Posterior > P(D)
. ).
™~ Normalization

* Orequivalently: P(6 | D) «x P(D|60)P(0)

* Also, for uniform priors:
[] reduces to MLE objective

P(l) x1 P(0|D)xP(D|0)



Bayesian Learning for Thumbtacks
P(6| D) x P(D]|0)P(H)

Likelihood function is Binomial;
P(D|60) =0%H(1 — 0)°T

* What about prior?
— Represent expert knowledge
— Simple posterior form
* Conjugate priors:
— Closed-form representation of posterior
— For Binomial, conjugate prior is Beta distribution



Beta prior distribution - P(0)

9PH—1(1 — 9)Pr—1

P(0) =
() B(ﬁHaﬁT)

~ BBtCL(ﬁH, ﬁT)

Beta(3,2) ]  Beta(3020)

* Likelihood function: p(D | ) = 9%H (1 — )T
* Posterior: P(6 | D) « P(D|0O)P(0)
P(# | D) x 6*1 (1 — )T §r—1(1 — g)Pr~1
_ @ozHJrBH—l(l _ 9)@T+BT_1
= Beta(ag~+BH, ar+06T)



Posterior distribution

* Prior: Beta(8y, B7)
e Data: o, heads and a; tails

* Posterior distribution:
P(0 | D) ~ Beta(By + oy, B + ar)

Beta(1,1) s Beta(2,2) Beta(3,2) ] Beta(30,20)




Beta(30,20)

MAP for Beta distribution

meater valiia

oBrtan—1(1 — g)Prt+ar—1 o
~ Beta(By+ay, Br+ar)

0 —
P@|D) B(By + ay, Br + ar)

* MAP: use most likely parameter:

- ag + Or — 1
0 =argmaxP(0 | D) = 5, Far 1 or 2

* Beta prior equivalent to extra thumbtack flips
* As N — oo, prior is “forgotten”
* But, for small sample size, prior is important!



What about continuous variables?

* Billionaire says: If | am
measuring a
continuous variable,
what can you do for
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me?
* You say: Let me tell T :
you about Gaussians...
1 —(z—-w)?
P(x | p,0) = e 207




Some properties of Gaussians

* Affine transformation (multiplying by
scalar and adding a constant) are Gaussian
— X ~ N(u,02)
—Y=aX+b[]Y~ N(autb,a262)

=0, T*=10,— A

=0, gi=5.0,—

Py g=(X)

* Sum of Gaussians is Gaussian |
— X~ N(Ux,0%) il S v s
—Y ~ N(uy,02)

—Z=X+Y [ Z~ N(uytuy, 62+02)

* Easy to differentiate, as we will see soon!



Learning a Gaussian

* Collect a bunch of data

—Hopefully, i.i.d. samples Lo
—e.g., exam scores S
3 12
* Learn parameters
—Mean: u CoRE
—Variance: o
1 —(z—-w)?
P(x | p,0) = e 207




1 —@=w?

MVLE for Gaussian: pP|u o) =

e 202

o\ 2T

e Prob. of i.i.d. samples D={x,,...,x,}:

1 \V N —(-w?
0@)

UMLE,OMLE = alg maaxP(D |, 0)

Y

P(D | py0) = (

* Log-likelihood of data:
1 N N —(z;-w)?
() 15

o\ 2T

InP(D | p,0) = In




Your second learning algorithm:
MLE for mean of a Gaussian

e What’s MLE for mean?

d d X (i — )3
— D = — |[—NlInoV?2
d,ulnp( | @, 0) i Nov2m — Z; 52
d =1 = d [(@i— )3
— _N| 2
du t no W} z:ld”[ 202
N
__Z(%—M) — 0
52
i=1
N
:—in—FN,u:O 1
i=1 AMLE = D %
Ni=1




MVLE for variance

* Again, set derivative to zero:

d
—|I’]P(D|/L,O‘)
do

d Yz — )
. —NlInov2r — ) 5o

g i=1

= L [Ninovar _é u [(%‘—M)z]

o D02
N
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CMLE — NZ(% —M)
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Learning Gaussian parameters

* MLE: 1
UMLE = — ) T
N, =
2 1 & >
ovLE = 2 (@i — )
i=1

e BTW. MLE for the variance of a Gaussian is biased

— Expected result of estimation is not true parameter!

— Unbiased variance estimator:
2 1 X 2
a-unbz'a,sed — E : (372 — ﬁ)




Bayesian learning of Gaussian
parameters

* Conjugate priors
— Mean: Gaussian prior
— Variance: Wishart Distribution

* Prior for mean:

1 —(u—n)?

P(p [ n,A) = e 2\

AV 27
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