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Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer



Human Neurons

• Switching time
• ~ 0.001 second

• Number of neurons
– 1010

• Connections per neuron
– 104-5

• Scene recognition time
– 0.1 seconds

• Number of cycles per scene recognition?
– 100 much parallel computation!



Perceptron as a Neural Network

g

This is one neuron:

– Input edges x1 ... xn, along with basis

– The sum is represented graphically

– Sum passed through an activation function g



Sigmoid Neuron
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Just change g!
• Why would be want to do this?

• Notice new output range [0,1]. What was it before?

• Look familiar?



Optimizing a neuron

We train to minimize sum-squared error

Solution just depends on g’: derivative of activation function!



g

Re-deriving the perceptron update

For a specific, incorrect example:
• w = w + y*x (our familiar update!)



Sigmoid units: have to differentiate g



Aside: Comparison to logistic 
regression

• P(Y|X) represented by:

• Learning rule – MLE:

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



g

Perceptron, linear classification, 
Boolean functions: xi∈{0,1} 

• Can learn x1 ∨ x2?
• -0.5 + x1 + x2

• Can learn x1 ∧ x2?
• -1.5 + x1 + x2

• Can learn any conjunction or disjunction?
• 0.5 + x1 + … + xn

• (-n+0.5) + x1 + … + xn

• Can learn majority?
• (-0.5*n) + x1 + … + xn

• What are we missing? The dreaded XOR!, etc.



Going beyond linear classification

Solving the XOR problem
y = x1 XOR x2

v1 = (x1 ∧¬x2) 
= -1.5+2x1-x2

v2 = (x2 ∧¬x1) 
= -1.5+2x2-x1

y = v1∨ v2

= -0.5+v1+v2
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= (x1 ∧ ¬x2) ∨ (x2 ∧¬x1)



Hidden layer

• Single unit:

• 1-hidden layer:  

• No longer convex function!
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Forward propagation
1-hidden layer:

Compute values left 
to right  

1. Inputs: x1, …, xn

2. Hidden: v1 ,…, vn

3. Output: y
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Gradient descent for 1-
hidden layer

Dropped w0 to make derivation simpler

Gradient for last layer same as the single node 

case, but with hidden nodes v as input!



Gradient descent for 
1-hidden layer 

Dropped w0 to make derivation simpler

For hidden layer, 

two parts:

• Normal update 

for single neuron

• Recursive 

computation of 

gradient on 

output layer



Multilayer neural networks

Inference and 

Learning:

• Forward pass: 

left to right, each 

hidden layer in 

turn

• Gradient 

computation: 

right to left, 

propagating 

gradient for 

each node
Forward 

Gradient



Forward propagation – prediction

• Recursive algorithm

• Start from input layer

• Output of node Vk with parents U1,U2,…:



Back-propagation – learning

• Just gradient descent!!! 

• Recursive algorithm for computing gradient

• For each example

– Perform forward propagation 

– Start from output layer

• Compute gradient of node Vk with parents U1,U2,…

• Update weight wi
k

• Repeat (move to preceding layer)



Back-propagation – pseudocode

Initialize all weights to small random numbers

• Until convergence, do:
– For each training example x,y:

1. Forward propagation, compute node values Vk

2. For each output unit o (with labeled output y):

δo = Vo(1-Vo)(y-Vo)
3. For each hidden unit h:

δh = Vh(1-Vh) Σk in output(h) wh,kδk

4. Update each network weight wi,j from node i to node j

wi,j = wi,j + ηδjxi,j



Convergence of backprop

• Perceptron leads to convex optimization

– Gradient descent reaches global minima

• Multilayer neural nets not convex

– Gradient descent gets stuck in local minima

– Selecting number of hidden units and layers =  fuzzy process

– NNs have made a HUGE comeback in the last few years!!!
• Neural nets are back with a new name!!!!

– Deep belief networks

– Huge error reduction when trained with lots of data on GPUs



Overfitting in NNs

• Are NNs likely to overfit?
– Yes, they can represent 

arbitrary functions!!!

• Avoiding overfitting?
– More training data

– Fewer hidden nodes / better 
topology

– Regularization

– Early stopping



Image ModelsObject Recognition

Slides from Jeff Dean at Google



Number Detection

Slides from Jeff Dean at Google

What are these numbers?



Slides from Jeff Dean at Google

Acoustic Modeling for Speech Recognition

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English!
(“biggest single improvement in 20 years of speech research”)

Launched in 2012 at time of Jellybean release of Android

Close collaboration with Google Speech team

label



Slides from Jeff Dean at Google

Fully-connected layers

Input

Layer 1

Layer 7

...

Softmax to predict object class

Convolutional layers!
(same weights used at all!
spatial locations in layer)!
!

Convolutional networks 
developed by!
Yann LeCun (NYU)

Basic architecture developed by Krizhevsky, Sutskever & Hinton 
(all now at Google).!

Won 2012 ImageNet challenge with 16.4%  top-5 error rate

2012-era Convolutional Model for Object Recognition



Slides from Jeff Dean at Google

24 layers deep!

2014-era Model for Object Recognition

Developed by team of Google Researchers:!

Won 2014 ImageNet challenge with 6.66%  top-5 error rate

Module with 6 separate!

convolutional layers



Slides from Jeff Dean at Google

Good Fine-grained Classification

“hibiscus” “dahlia”



Slides from Jeff Dean at Google

Good Generalization

Both recognized as a 

“meal”



Slides from Jeff Dean at Google

Sensible Errors

“snake” “dog”



Slides from Jeff Dean at Google

Works in practice
 for real users.



Slides from Jeff Dean at Google

Works in practice
 for real users.



Object Detection



YOLO

40
DEMO



What you need to know about neural 
networks

• Perceptron:

– Relationship to general neurons

• Multilayer neural nets

– Representation

– Derivation of backprop

– Learning rule

• Overfitting


