
CSE446: Neural Networks
Spring 2017

Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

Human Neurons

• Switching time
• ~ 0.001 second

• Number of neurons
– 1010

• Connections per neuron
– 104-5

• Scene recognition time
– 0.1 seconds

• Number of cycles per scene recognition?
– 100 much parallel computation!

Perceptron as a Neural Network

g

This is one neuron:

– Input edges x1 ... xn, along with basis

– The sum is represented graphically

– Sum passed through an activation function g

Sigmoid Neuron

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g

Just change g!
• Why would be want to do this?

• Notice new output range [0,1]. What was it before?

• Look familiar?

Optimizing a neuron

We train to minimize sum-squared error

Solution just depends on g’: derivative of activation function!

g

Re-deriving the perceptron update

For a specific, incorrect example:
• w = w + y*x (our familiar update!)

Sigmoid units: have to differentiate g

Aside: Comparison to logistic
regression

• P(Y|X) represented by:

• Learning rule – MLE:

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g

Perceptron, linear classification,
Boolean functions: xi∈{0,1}

• Can learn x1 ∨ x2?
• -0.5 + x1 + x2

• Can learn x1 ∧ x2?
• -1.5 + x1 + x2

• Can learn any conjunction or disjunction?
• 0.5 + x1 + … + xn

• (-n+0.5) + x1 + … + xn

• Can learn majority?
• (-0.5*n) + x1 + … + xn

• What are we missing? The dreaded XOR!, etc.

Going beyond linear classification

Solving the XOR problem
y = x1 XOR x2

v1 = (x1 ∧¬x2)
= -1.5+2x1-x2

v2 = (x2 ∧¬x1)
= -1.5+2x2-x1

y = v1∨ v2

= -0.5+v1+v2

x1

x2

1

v1

v2

y

1
-0.5

1

1

-1.5

2

-1

2

-1
-1.5

= (x1 ∧ ¬x2) ∨ (x2 ∧¬x1)

Hidden layer

• Single unit:

• 1-hidden layer:

• No longer convex function!

©Carlos Guestrin 2005-2009

Example

data for NN

with hidden

layer

Learned

weights for

hidden layer

Forward propagation
1-hidden layer:

Compute values left
to right

1. Inputs: x1, …, xn

2. Hidden: v1 ,…, vn

3. Output: y

x1

x2

1

v1

v2

y

1

Forward propagation
1-hidden layer:

Compute values left
to right

1. Inputs: x1, …, xn

2. Hidden: v1 ,…, vn

3. Output: y

x1

x2

1

v1

v2

y

1

Forward propagation
1-hidden layer:

Compute values left
to right

1. Inputs: x1, …, xn

2. Hidden: v1 ,…, vn

3. Output: y

x1

x2

1

v1

v2

y

1

Forward propagation
1-hidden layer:

Compute values left
to right

1. Inputs: x1, …, xn

2. Hidden: v1 ,…, vn

3. Output: y

x1

x2

1

v1

v2

y

1

©Carlos Guestrin 2005-2009 18

©Carlos Guestrin 2005-2009 19

©Carlos Guestrin 2005-2009 20

Gradient descent for 1-
hidden layer

Dropped w0 to make derivation simpler

Gradient for last layer same as the single node

case, but with hidden nodes v as input!

Gradient descent for
1-hidden layer

Dropped w0 to make derivation simpler

For hidden layer,

two parts:

• Normal update

for single neuron

• Recursive

computation of

gradient on

output layer

Multilayer neural networks

Inference and

Learning:

• Forward pass:

left to right, each

hidden layer in

turn

• Gradient

computation:

right to left,

propagating

gradient for

each node
Forward

Gradient

Forward propagation – prediction

• Recursive algorithm

• Start from input layer

• Output of node Vk with parents U1,U2,…:

Back-propagation – learning

• Just gradient descent!!!

• Recursive algorithm for computing gradient

• For each example

– Perform forward propagation

– Start from output layer

• Compute gradient of node Vk with parents U1,U2,…

• Update weight wi
k

• Repeat (move to preceding layer)

Back-propagation – pseudocode

Initialize all weights to small random numbers

• Until convergence, do:
– For each training example x,y:

1. Forward propagation, compute node values Vk

2. For each output unit o (with labeled output y):

δo = Vo(1-Vo)(y-Vo)
3. For each hidden unit h:

δh = Vh(1-Vh) Σk in output(h) wh,kδk

4. Update each network weight wi,j from node i to node j

wi,j = wi,j + ηδjxi,j

Convergence of backprop

• Perceptron leads to convex optimization

– Gradient descent reaches global minima

• Multilayer neural nets not convex

– Gradient descent gets stuck in local minima

– Selecting number of hidden units and layers = fuzzy process

– NNs have made a HUGE comeback in the last few years!!!
• Neural nets are back with a new name!!!!

– Deep belief networks

– Huge error reduction when trained with lots of data on GPUs

Overfitting in NNs

• Are NNs likely to overfit?
– Yes, they can represent

arbitrary functions!!!

• Avoiding overfitting?
– More training data

– Fewer hidden nodes / better
topology

– Regularization

– Early stopping

Image ModelsObject Recognition

Slides from Jeff Dean at Google

Number Detection

Slides from Jeff Dean at Google

What are these numbers?

Slides from Jeff Dean at Google

Acoustic Modeling for Speech Recognition

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English!
(“biggest single improvement in 20 years of speech research”)

Launched in 2012 at time of Jellybean release of Android

Close collaboration with Google Speech team

label

Slides from Jeff Dean at Google

Fully-connected layers

Input

Layer 1

Layer 7

...

Softmax to predict object class

Convolutional layers!
(same weights used at all!
spatial locations in layer)!
!

Convolutional networks
developed by!
Yann LeCun (NYU)

Basic architecture developed by Krizhevsky, Sutskever & Hinton
(all now at Google).!

Won 2012 ImageNet challenge with 16.4% top-5 error rate

2012-era Convolutional Model for Object Recognition

Slides from Jeff Dean at Google

24 layers deep!

2014-era Model for Object Recognition

Developed by team of Google Researchers:!

Won 2014 ImageNet challenge with 6.66% top-5 error rate

Module with 6 separate!

convolutional layers

Slides from Jeff Dean at Google

Good Fine-grained Classification

“hibiscus” “dahlia”

Slides from Jeff Dean at Google

Good Generalization

Both recognized as a

“meal”

Slides from Jeff Dean at Google

Sensible Errors

“snake” “dog”

Slides from Jeff Dean at Google

Works in practice
 for real users.

Slides from Jeff Dean at Google

Works in practice
 for real users.

Object Detection

YOLO

40
DEMO

What you need to know about neural
networks

• Perceptron:

– Relationship to general neurons

• Multilayer neural nets

– Representation

– Derivation of backprop

– Learning rule

• Overfitting

