
CSE446: non-parametric methods
Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin and Luke Zettlemoyer

Linear Regression: What can go wrong?

What do we do if the bias is too strong?
• Might want the data to drive the complexity of the model!

• Try instance-based Learning (a.k.a. non-parametric methods)?

Using data to predict new data

Y

X

Nearest neighbor with lots of data!

Univariate 1-Nearest Neighbor

Given data (x1,y1) (x2,y2)..(xN,yN),where we assume y=f(x) for some unknown
function f.
Given query point x, your job is to predict y=f(x)
Nearest Neighbor:
1. Find the closest xi in our set of datapoints

i nn() =
i

argmin xi - x

2. Predict yi(nn)

Here’s a
dataset with
one input, one
output and four
datapoints.

x

y

Here, this is
the closest
datapoint

1-Nearest Neighbor is an example of….
Instance-based learning

Instance-based learning, four things to specify:
• A distance metric
• How many nearby neighbors to look at?
• A weighting function (optional)
• How to fit with the local points?

x1 y1

x2 y2

x3 y3

…

xn yn

A function approximator that

has been around since about

1910.

To make a prediction, search

database for similar datapoints,

and fit with the local points.

1-Nearest Neighbor

Instance-based learning, four things to specify:

1. A distance metric
Often Euclidian (many more are possible)

2. How many nearby neighbors to look at?
One

3. A weighting function (optional)
Unused

4. How to fit with the local points?

Just predict the same output as the nearest neighbor.

Multivariate 1-NN examples

RegressionClassification

+ +
+

+

+

+

+

+

+
+

+

+

-

-

-

-

-

-

-
-

8 8
7

9

9

-1

-2

-2.3
-3.1

-0.1
-0.1

2.1

3

5

118

12

13

21

7.2

Notable distance metrics (and their level sets)

L1 norm (absolute)

L∞ (max) norm

Weighted Euclidian (L2)

Mahalanobis

Consistency of 1-NN

• Consider an estimator fn trained on n examples
– e.g., 1-NN, neural nets, regression,...

• Estimator is consistent if true error goes to zero as amount of
data increases
– e.g., for no noise data, consistent if for any data distribution p(x):

• Linear regression is not consistent!
– Representation bias

• 1-NN is consistent
– What about noisy data?

– What about variance?

MSE(fn) = p(x) fn(x)- yx()
2
dx

x
ò

1-NN overfits?

k-Nearest Neighbor
Instance-based learning, four things to specify:

1. A distance metric

Euclidian (and many more)

2. How many nearby neighbors to look at?

k

1. A weighting function (optional)

Unused

2. How to fit with the local points?

Return the average output

predict: (1/k) Σiy
i (summing over k nearest neighbors)

k-Nearest Neighbor

Which is better? What can we do about the discontinuities?

k=9

k=1

Weighted distance metrics
Suppose the input vectors x1, x2, …xN are two dimensional:

x1 = (x1
1 , x1

2) , x2 = (x2
1 , x2

2) , …xN = (xN
1 , xN

2).

Nearest-neighbor regions in input space:

Dist(xi,xj) =(xi
1 – xj

1)
2+(3xi

2 – 3xj
2)

2

The relative scaling of the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)
2 + (xi

2 – xj
2)

2

Weighted Euclidean distance metric

Other Metrics…

• Mahalanobis, Rank-based, Correlation-based,…

D(x,x') = s i

2 xi - x 'i()
2

i

å

D(x,x') = (x-x')T (x-x')å

å =

1

2 0 0

0 2

2 0

0 0 N

2

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

where

Or equivalently,

Kernel regression
Instance-based learning:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
All of them

3. A weighting function
wi = exp(-D(xi, query)2 / Kw

2)

Nearby points to the query are weighted strongly, far points weakly.

The KW parameter is the Kernel Width. Very important.

4. How to fit with the local points?
Predict the weighted average of the outputs:

predict = Σwiyi / Σwi

D(x1,x2)

wi

Kw

Many possible weighting functions

wi = exp(-D(xi, query)2 / Kw
2)

Typically:

• Choose D manually

• Optimize Kw using

gradient descent

(Our examples use Gaussian)

Kernel regression predictions

Increasing the kernel width Kw means further away points get
an opportunity to influence you.

As Kw∞, the prediction tends to the global average.

KW=10 KW=20 KW=80

Kernel regression on our test cases

KW=1/32 of x-axis width. KW=1/32 of x-axis width. KW=1/16 axis width.

Choosing a good Kw is important! Remind you of anything we have seen?

N
N

 k
=

9
K

e
rn

e
l
re

g
re

s
s
io

n

Kernel regression: problem solved?

KW = Best. KW = Best. KW = Best.

Where are we having problems?

• Sometimes in the middle…

• Generally, on the ends (extrapolation is hard!)

Time to try something more powerful…!!!

Locally weighted regression

Kernel regression:

• Take a very very conservative function
approximator called AVERAGING.

• Locally weight it.

Locally weighted regression:

• Take a conservative function approximator called
LINEAR REGRESSION.

• Locally weight it.

Locally weighted regression

Instance-based learning, four things to specify:
• A distance metric

Any

• How many nearby neighbors to look at?

All of them

• A weighting function (optional)

Kernels: wi = exp(-D(xi, query)2 / Kw2)

• How to fit with the local points?

General weighted regression:

ŵ =
w

argmin (wk yk -wT xk())
k=1

N

å
2

How LWR works

Query

Linear regression
 Same parameters for

all queries

Locally weighted regression
 Solve weighted linear regression

for each query

  YXXXβ̂ T1T 
























nw

w

w

W

000

000

000

000

2

1





  WX 
T
WX 

1

WX 
T
WY

Solving for each

input: complex

surface!

LWR on our test cases

KW = 1/16 of x-axis width. KW = 1/32 of x-axis width. KW = 1/8 of x-axis width.

KW=1/32 of x-axis width. KW=1/32 of x-axis width. KW=1/16 axis width.

K
e
rn

e
l
re

g
re

s
s
io

n
L
W

R

Locally weighted polynomial regression

KW = 1/100 x-axis KW = 1/40 x-axis KW = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the
WXTWX matrix. As the regression degree increases, the kernel width
can increase without introducing bias.

Kernel Regression: Kernel width KW at optimal level.

Challenges for instance based learning

• Must store and retrieve all data!

– Most real work done during testing

– For every test sample, must search through all dataset –
very slow!

– But, there are fast methods for dealing with large datasets

• Instance-based learning often poor with noisy or
irrelevant features

– In high dimensional spaces, all points will be very far from
each other

– Typically need a number of examples that is exponential in
the dimension of X

– But, sometimes you are ok if you are cleaver about features

Curse of the irrelevant feature

This is a contrived example, but similar problems are common in practice

Need some form of feature selection!!

X2

X1

+
+

+ +
+

+ +
+

+-
-

- -
-

-

+ + +--

What you need to know about instance-
based learning

• k-NN
– Simplest learning algorithm
– With sufficient data, very hard to beat “strawman” approach
– Picking k?

• Kernel regression
– Set k to n (number of data points) and optimize weights by gradient

descent
– Smoother than k-NN

• Locally weighted regression
– Generalizes kernel regression, not just local average

• Curse of dimensionality
– Must remember (very large) dataset for prediction
– Irrelevant features often killers for instance-based approaches

Acknowledgment

• This lecture contains some material from
Andrew Moore’s excellent collection of ML
tutorials:

– http://www.cs.cmu.edu/~awm/tutorials

http://www.cs.cmu.edu/~awm/tutorials

