HW1

- Grades our out
- Total: 180
- Min: 55
- Max: 188(178+10 for bonus credit)
- Average: 174.24
- Median: 178
- std: 18.225

Top5 on HW1

1. Curtis, Josh (score: 188, test accuracy: 0.9598)

2. Huang, Waylon (score: 180, test accuracy: 0.8202)

3. Luckey, Royden (score: 180, test accuracy: 0.8192)

4. Luo, Mathew Han (score: 180, test accuracy: 0.8174)

5. Shen, Dawei (score: 180, test accuracy: 0.8130)

CSE446: Ensemble Learning -Bagging and Boosting Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin, Nick Kushmerick, Padraig Cunningham, and Luke Zettlemoyer

x1

Voting (Ensemble Methods)

- Instead of learning a single classifier, learn many weak classifiers that are good at different parts of the data
- **Output class:** (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more conviction
 - Classifiers will be most "sure" about a particular part of the space
 - On average, do better than single classifier!

• But how???

- force classifiers to learn about different parts of the input space? different subsets of the data?
- weigh the votes of different classifiers?

BAGGing = <u>Bootstrap AGG</u>regation (Breiman, 1996)

- for i = 1, 2, ..., K:
 - − T_i ← randomly select M training instances with replacement
 - $-h_i \leftarrow learn(T_i)$ [Decision Tree, Naive Bayes, ...]
- Now combine the h_i together with uniform voting (w_i=1/K for all i)

Bagging Example

_decision tree learning algorithm; very similar to version in earlier slides

CART decision boundary

100 bagged trees

shades of blue/red indicate strength of vote for particular classification

Regression results Squared error loss

Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don't usually overfit
- Simple (a.k.a. weak) learners are bad
 - High bias, can't solve hard learning problems
- Can we make weak learners always good???
 No!!!

Boosting

[Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration *t*:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis h_t
 - A strength for this hypothesis $\alpha_{\rm t}$
- Final classifier:

$$h(x) = \operatorname{sign}\left(\sum_{i} \alpha_{i} h_{i}(x)\right)$$

- Practically useful
- Theoretically interesting

🖒 - 🎅

🗵 😭 📄 http://www1.cs.columbia.edu/~freund/adaboost/

time = 0

blue/red = class

-

🕞 Go 🔀

size of dot = weight

weak learner = Decision stub: horizontal or vertica

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

1.cs.columbia.edu/~freund/adaboost/

-

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

A http://www1.cs.columbia.edu/~freund/adaboost/

time = 2

🕞 Go 💽

•

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

1.cs.columbia.edu/~freund/adaboost/

time = 3

🕞 Go 💽

•

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

1.cs.columbia.edu/~freund/adaboost/

time = 13

🕞 Go 💽

•

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

A http://www1.cs.columbia.edu/~freund/adaboost/

time = 100

🔘 Go 🔀

•

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

A http://www1.cs.columbia.edu/~freund/adaboost/

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

Learning from weighted data

- Consider a weighted dataset
 - D(i) weight of *i* th training example (\mathbf{x}^{i}, y^{i})
 - Interpretations:
 - *i* th training example counts as if it occurred D(i) times
 - If I were to "resample" data, I would get more samples of "heavier" data points
- Now, always do weighted calculations:
 - e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count:

$$Count(Y = y) = \sum_{j=1}^{n} D(j)\delta(Y^{j} = y)$$

 setting D(j)=1 (or any constant value!), for all j, will recreates unweighted case Given: $(x^1, y^1), \dots, (x^m, y^m)$ where $x^i \in \mathbb{R}^n, y^i \in \{-1, +1\}$ Initialize: $D_1(i) = 1/m$, for i = 1, ..., m — How? Many possibilities. Will For t=1...T: see one shortly!

- Train base classifier $h_t(x)$ using D_t
- Choose $\alpha_t \ll$
- Update, for i=1..m:

Why? Reweight the data: examples *i* that are misclassified will have higher weights!

$$D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^i h_t(x^i))$$

with normalization constant:

$$\sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y^i h_t(x^i))$$

Output final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{i=1}^{T} \alpha_t h_t(x)\right)$$

 $y^{i}h_{t}(x^{i}) > 0 \rightarrow h_{i} \text{ correct}$ $y^{i}h_{t}(x^{i}) < 0 \rightarrow h_{i} \text{ wrong}$ $h_{i} \text{ correct}, \alpha_{t} > 0 \rightarrow$

•
$$y^i h_t(x^i) < 0 \rightarrow h_i$$
 wrong

- $D_{t+1}(i) < D_t(i)$
- h_i wrong, $\alpha_i > 0 \rightarrow$ $D_{t+1}(i) > D_t(i)$

Final Result: linear sum of "base" or "weak" classifier outputs.

Given: $(x^1, y^1), \dots, (x^m, y^m)$ where Initialize: $D_1(i) = 1/m$, for $i = 1, \dots, \epsilon_t = \sum_{i=1}^m D_t(i)\delta(h_t(x^i) \neq y^i)$ For t=1...T:

- Train base classifier h_t(x) using D_t
- Choose α_t
- Update, for i=1..m:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

$$D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^i h_t(x^i))$$

- ε_t : error of h_t , weighted by D_t
 - $0 \le \varepsilon_t \le 1$
- α_t :
 - No errors: $\varepsilon_t = 0 \rightarrow \alpha_t = \infty$
 - All errors: $\varepsilon_t = 1 \rightarrow \alpha_t = -\infty$
 - Random: $\varepsilon_t = 0.5 \rightarrow \alpha_t = 0$

What α_t to choose for hypothesis h_t ? [Schapire, 1989]

Idea: choose α_t to minimize a bound on training error!

What α_t to choose for hypothesis h_t ?

[Schapire, 1989]

Idea: choose α_t to minimize a bound on training error!

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x^{i}) \neq y^{i}) \le \frac{1}{m} \sum_{i=1}^{m} D_{t}(i) \exp(-y^{i} f(x^{i})) = \prod_{i=1}^{m} Z_{t}$$

Where

$$f(x) = \sum_{t} \alpha_t h_t(x); H(x) = sign(f(x))$$

m

And

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y^i h_t(x^i))$$

This equality isn't obvious! Can be shown with algebra (telescoping sums)!

If we minimize $\prod_{t} Z_{t}$, we minimize our training error!!!

- We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t .
- h_t is estimated as a black box, but can we solve for α_t ?

Summary: choose α_t to minimize error bound [Schapire, 1989]

We can squeeze this bound by choosing α_t on each iteration to minimize Z_{t} .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y^i h_t(x^i))$$

$$\epsilon_t = \sum_{i=1}^m D_t(i) \delta(h_t(x^i) \neq y^i)$$

For boolean Y: differentiate, set equal to 0, there is a closed form solution! [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Given:
$$(x^1, y^1), \dots, (x^m, y^m)$$
 where $\epsilon_t = \sum_{i=1}^m D_t(i)\delta(h_t(x^i) \neq y^i)$
 $\alpha_t = \frac{1}{2}\ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$

Initialize: $D_1(i) = 1/m$, for i = 1, ..., mFor t=1...T:

- Train base classifier h_t(x) using D_t
- Choose $\alpha_t = \sum_{i=1}^m D_t(i)\delta(h_t(x^i) \neq y^i)$ $\alpha_t = \frac{1}{2}\ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$
- Update, for i=1..m:

$$D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^i h_t(x^i))$$

Output final classifier:

1

-1

1

 $\mathbf{0}$

1

$$H(x) = \operatorname{sign}\left(\sum_{i=1}^{T} \alpha_t h_t(x)\right)$$

Use decision stubs as base classifier Initial:

- D₁ = [D₁(1), D₁(2), D₁(3)] = [.33,.33,.33] t=1:
- Train stub [work omitted, breaking ties randomly]
 - h₁(x)=+1 if x₁>0.5, -1 otherwise
- $\epsilon_1 = \Sigma_i D_1(i) \, \delta(h_1(x^i) \neq y^i)$ = 0.33×1+0.33×0+0.33×0=0.33
- $\alpha_1 = (1/2) \ln((1-\epsilon_1)/\epsilon_1) = 0.5 \times \ln(2) = 0.35$
- $D_2(1) \alpha D_1(1) \times \exp(-\alpha_1 y^1 h_1(x^1))$ = 0.33×exp(-0.35×1×-1) = 0.33×exp(0.35) = 0.46
- $D_2(2) \alpha D_1(2) \times \exp(-\alpha_1 y^2 h_1(x^2))$ = 0.33×exp(-0.35×-1×-1) = 0.33×exp(-0.35) = 0.23
- $D_2(3) \alpha D_1(3) \times \exp(-\alpha_1 y^3 h_1(x^3))$ = 0.33×exp(-0.35×1×1) = 0.33×exp(-0.35) =0.23

t=2

• Continues on next slide!

 $H(x) = sign(0.35 \times h_1(x))$

• h₁(x)=+1 if x₁>0.5, -1 otherwise

Initialize: $D_1(i) = 1/m$, for i = 1, ..., mFor t=1...T:

- Train base classifier h_t(x) using D_t
- Choose $\alpha_t = \sum_{i=1}^m D_t(i)\delta(h_t(x^i) \neq y^i)$ $\alpha_t = \frac{1}{2}\ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$
- Update, for i=1..m: $D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^i h_t(x^i))$

Output final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{i=1}^{T} \alpha_t h_t(x)\right)$$

- D₂ = [D₁(1), D₁(2), D₁(3)] = [0.5,0.25,0.25] t=2:
- Train stub [work omitted; different stub because of new data weights D; breaking ties opportunistically (will discuss at end)]
 - h₂(x)=+1 if x₁<1.5, -1 otherwise
- $\epsilon_2 = \Sigma_i D_2(i) \, \delta(h_2(x^i) \neq y^i)$ = 0.5×0+0.25×1+0.25×0=0.25
- $\alpha_2 = (1/2) \ln((1-\epsilon_2)/\epsilon_2) = 0.5 \times \ln(3) = 0.55$
- $D_2(1) \alpha D_1(1) \times \exp(-\alpha_2 y^1 h_2(x^1))$ = 0.5×exp(-0.55×1×1) = 0.5×exp(-0.55) = 0.29
- $D_2(2) \alpha D_1(2) \times \exp(-\alpha_2 y^2 h_2(x^2))$ = 0.25 \times exp(-0.55 \times -1 \times 1) = 0.25 \times exp(0.55) = 0.43
- $D_2(3) \alpha D_1(3) \times \exp(-\alpha_2 y^3 h_2(x^3))$ = 0.25 \times exp(-0.55 \times 1 \times 1) = 0.25 \times exp(-0.55) = 0.14
- $D_3 = [D_3(1), D_3(2), D_3(3)] = [0.33, 0.5, 0.17]$

t=3

Continues on next slide!

 $H(x) = sign(0.35 \times h_1(x) + 0.55 \times h_2(x))$

X₁

- h₁(x)=+1 if x₁>0.5, -1 otherwise
- h₂(x)=+1 if x₁<1.5, -1 otherwise

Initialize: $D_1(i) = 1/m$, for i = 1, ..., mFor t=1...T:

- Train base classifier h_t(x) using D_t
- Choose $\alpha_t = \sum_{i=1}^m D_t(i)\delta(h_t(x^i) \neq y^i)$ $\alpha_t = \frac{1}{2}\ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$
- Update, for i=1..m:

 $D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^i h_t(x^i))$

Output final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{i=1}^{T} \alpha_t h_t(x)\right)$$

- D₃ = [D₃(1), D₃(2), D₃(3)] = [0.33,0.5,0.17] t=3:
- Train stub [work omitted; different stub because of new data weights D; breaking ties opportunistically (will discuss at end)]
 - h₃(x)=+1 if x₁<-0.5, -1 otherwise
- $\epsilon_3 = \Sigma_i D_3(i) \, \delta(h_3(x^i) \neq y^i)$ = 0.33×0+0.5×0+0.17×1=0.17
- $\alpha_3 = (1/2) \ln((1-\epsilon_3)/\epsilon_3) = 0.5 \times \ln(4.88) = 0.79$
- Stop!!! How did we know to stop?

 $H(x) = sign(0.35 \times h_1(x) + 0.55 \times h_2(x) + 0.79 \times h_3(x))$

• h₁(x)=+1 if x₁>0.5, -1 otherwise

X₁

- h₂(x)=+1 if x₁<1.5, -1 otherwise
- h₃(x)=+1 if x₁<-0.5, -1 otherwise

Strong, weak classifiers

- If each classifier is (at least slightly) better than random: $\epsilon_t < 0.5$
- Another bound on error:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x^{i}) \neq y^{i}) \le \prod_{t} Z_{t} \le \exp\left(-2\sum_{t=1}^{T} (1/2 - \epsilon_{t})^{2}\right)$$

- What does this imply about the training error?
 - Will reach zero!
 - Will get there exponentially fast!
- Is it hard to achieve better than random training error?

Boosting results – Digit recognition [Schapire, 1989]

- Boosting:
 - Seems to be robust to overfitting
 - Test error can decrease even after training error is zero!!!

Boosting generalization error bound

[Freund & Schapire, 1996]

$$error_{true}(H) \leq error_{train}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

Constants:

- T: number of boosting rounds
 - Higher T \rightarrow Looser bound
- *d*: measures complexity of classifiers
 - Higher d \rightarrow bigger hypothesis space \rightarrow looser bound
- *m*: number of training examples

- more data \rightarrow tighter bound

Boosting generalization error bound

[Freund & Schapire, 1996]

$$error_{true}(H) \leq error_{train}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

Constants:

• Theory does not match practice:

- Robust to overfitting
- Test set error decreases even after training error is zero

Need better analysis tools

• we'll come back to this later in the quarter

Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss:

Boosting minimizes similar loss function:

Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:

• Minimize loss fn

$$\sum_{i=1}^{m} \ln(1 + \exp(-y^{i} f(x^{i})))$$

• Define

$$f(x) = \sum_{j} w_j x_j$$

where each feature x_j is predefined

Jointly optimize parameters
w₀, w₁, ... w_n via gradient
ascent.

Boosting:

• Minimize loss fn

$$\sum_{i=1}^{m} \exp(-y^i f(x^i))$$

• Define

 $f(x) = \sum_{t} \alpha_{t} h_{t}(x)$ where $h_{t}(x)$ learned to fit data

 Weights α_j learned incrementally (new one for each training pass)

What you need to know about Boosting

- Combine weak classifiers to get very strong classifier
 - Weak classifier slightly better than random on training data
 - Resulting very strong classifier can get zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Both linear model, boosting "learns" features
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier