
HW1

• Grades our out

• Total: 180

• Min: 55

• Max: 188(178+10 for bonus credit)

• Average: 174.24

• Median: 178

• std: 18.225

1

Top5 on HW1

2

1. Curtis, Josh (score: 188, test accuracy: 0.9598)

2. Huang, Waylon (score: 180, test accuracy: 0.8202)

3. Luckey, Royden (score: 180, test accuracy: 0.8192)

4. Luo, Mathew Han (score: 180, test accuracy: 0.8174)

5. Shen, Dawei (score: 180, test accuracy: 0.8130)

CSE446: Ensemble Learning -
Bagging and Boosting

Spring 2017

Ali Farhadi

Slides adapted from Carlos Guestrin, Nick Kushmerick, Padraig
Cunningham, and Luke Zettlemoyer

4

5

Voting (Ensemble Methods)

• Instead of learning a single classifier, learn many
weak classifiers that are good at different parts of
the data

• Output class: (Weighted) vote of each classifier
– Classifiers that are most “sure” will vote with more

conviction

– Classifiers will be most “sure” about a particular part of the
space

– On average, do better than single classifier!

• But how???
– force classifiers to learn about different parts of the input

space? different subsets of the data?

– weigh the votes of different classifiers?

BAGGing = Bootstrap AGGregation

(Breiman, 1996)

• for i = 1, 2, …, K:

– Ti  randomly select M training instances

with replacement

– hi  learn(Ti) [Decision Tree, Naive Bayes, …]

• Now combine the hi together with

uniform voting (wi=1/K for all i)

8

9

decision tree learning algorithm; very similar to version in earlier slides

shades of blue/red indicate strength of vote for particular classification

Fighting the bias-variance tradeoff

• Simple (a.k.a. weak) learners are good

– e.g., naïve Bayes, logistic regression, decision
stumps (or shallow decision trees)

– Low variance, don’t usually overfit

• Simple (a.k.a. weak) learners are bad

– High bias, can’t solve hard learning problems

• Can we make weak learners always good???

– No!!!

– But often yes…

Boosting
• Idea: given a weak learner, run it multiple times on

(reweighted) training data, then let learned classifiers vote

• On each iteration t:
– weight each training example by how incorrectly it was

classified
– Learn a hypothesis – ht

– A strength for this hypothesis – t

• Final classifier:

• Practically useful
• Theoretically interesting

[Schapire, 1989]

14

time = 0

blue/red = class

size of dot = weight

weak learner =

Decision stub:

horizontal or vertical line

15

time = 1

this hypothesis has 15%

error

and so does

this ensemble, since

the ensemble contains

just this one hypothesis

16

time = 2

17

time = 3

18

time = 13

19

time = 100

20

time = 300

overfitting!!

Learning from weighted data

• Consider a weighted dataset

– D(i) – weight of i th training example (xi,yi)

– Interpretations:
• i th training example counts as if it occurred D(i) times

• If I were to “resample” data, I would get more samples of
“heavier” data points

• Now, always do weighted calculations:
– e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count:

– setting D(j)=1 (or any constant value!), for all j, will recreates
unweighted case

How? Many possibilities. Will

see one shortly!

Why? Reweight the data:

examples i that are

misclassified will have

higher weights!

• yiht(x
i) > 0  hi correct

• yiht(x
i) < 0  hi wrong

• hi correct, αt> 0 

Dt+1(i) < Dt(i)

• hi wrong, αt> 0 

Dt+1(i) > Dt(i)

Final Result: linear sum of

“base” or “weak” classifier

outputs.

Given:
Initialize:
For t=1…T:

• Train base classifier ht(x) using Dt

• Choose αt

• Update, for i=1..m:

with normalization constant:

Output final classifier:

Given:
Initialize:
For t=1…T:

• Train base classifier ht(x) using Dt

• Choose αt

• Update, for i=1..m:

• εt : error of ht, weighted by Dt

• 0 ≤ εt ≤ 1

• αt :
• No errors: εt=0  αt=∞

• All errors: εt=1  αt=−∞

• Random: εt=0.5  αt=0

αt

εt

What t to choose for hypothesis ht?

Idea: choose t to minimize a bound on training error!

Where

[Schapire, 1989]

What t to choose for hypothesis ht?

Idea: choose t to minimize a bound on training error!

Where

And

If we minimize t Zt, we minimize our training error!!!

• We can tighten this bound greedily, by choosing t and ht

on each iteration to minimize Zt.

• ht is estimated as a black box, but can we solve for t?

[Schapire, 1989]

This equality isn’t

obvious! Can be

shown with algebra

(telescoping sums)!

Summary: choose t to minimize error bound

We can squeeze this bound by choosing t on each

iteration to minimize Zt.

For boolean Y: differentiate, set equal to 0, there is a

closed form solution! [Freund & Schapire ’97]:

[Schapire, 1989]

Given:
Initialize:
For t=1…T:

• Train base classifier ht(x) using Dt

• Choose αt

• Update, for i=1..m:

with normalization constant:

Output final classifier:

x1 y
-1 1

0 -1

1 1

x1

Use decision stubs as base classifier
Initial:
• D1 = [D1(1), D1(2), D1(3)] = [.33,.33,.33]
t=1:
• Train stub [work omitted, breaking ties randomly]

• h1(x)=+1 if x1>0.5, -1 otherwise
• ε1=ΣiD1(i) δ(h1(xi)≠yi)

= 0.33×1+0.33×0+0.33×0=0.33
• α1=(1/2) ln((1-ε1)/ε1)=0.5×ln(2)= 0.35
• D2(1) α D1(1)×exp(-α1y1h1(x1))

= 0.33×exp(-0.35×1×-1) = 0.33×exp(0.35) = 0.46
• D2(2) α D1(2) × exp(-α1y2h1(x2))

= 0.33×exp(-0.35×-1×-1) = 0.33×exp(-0.35) = 0.23
• D2(3) α D1(3) × exp(-α1y3h1(x3))

= 0.33×exp(-0.35×1×1) = 0.33×exp(-0.35) =0.23
• D2 = [D1(1), D1(2), D1(3)] = [0.5,0.25,0.25]
t=2
• Continues on next slide!

Initialize:
For t=1…T:

• Train base classifier ht(x) using Dt

• Choose αt

• Update, for i=1..m:

Output final classifier:

H(x) = sign(0.35×h1(x))

• h1(x)=+1 if x1>0.5, -1 otherwise

x1

x1 y
-1 1

0 -1

1 1

• D2 = [D1(1), D1(2), D1(3)] = [0.5,0.25,0.25]
t=2:
• Train stub [work omitted; different stub because of

new data weights D; breaking ties opportunistically
(will discuss at end)]

• h2(x)=+1 if x1<1.5, -1 otherwise
• ε2=ΣiD2(i) δ(h2(xi)≠yi)

= 0.5×0+0.25×1+0.25×0=0.25
• α2=(1/2) ln((1-ε2)/ε2)=0.5×ln(3)= 0.55
• D2(1) α D1(1)×exp(-α2y1h2(x1))

= 0.5×exp(-0.55×1×1) = 0.5×exp(-0.55) = 0.29
• D2(2) α D1(2)×exp(-α2y2h2(x2))

= 0.25×exp(-0.55×-1×1) = 0.25×exp(0.55) = 0.43
• D2(3) α D1(3)×exp(-α2y3h2(x3))

= 0.25×exp(-0.55×1×1) = 0.25×exp(-0.55) = 0.14
• D3 = [D3(1), D3(2), D3(3)] = [0.33,0.5,0.17]
t=3

• Continues on next slide!

Initialize:
For t=1…T:

• Train base classifier ht(x) using Dt

• Choose αt

• Update, for i=1..m:

Output final classifier:

H(x) = sign(0.35×h1(x)+0.55×h2(x))

• h1(x)=+1 if x1>0.5, -1 otherwise

• h2(x)=+1 if x1<1.5, -1 otherwise

x1

x1 y
-1 1

0 -1

1 1

• D3 = [D3(1), D3(2), D3(3)] = [0.33,0.5,0.17]
t=3:
• Train stub [work omitted; different stub

because of new data weights D; breaking ties
opportunistically (will discuss at end)]

• h3(x)=+1 if x1<-0.5, -1 otherwise
• ε3=ΣiD3(i) δ(h3(xi)≠yi)

= 0.33×0+0.5×0+0.17×1=0.17
• α3=(1/2) ln((1-ε3)/ε3)=0.5×ln(4.88)= 0.79

• Stop!!! How did we know to stop?

Initialize:
For t=1…T:

• Train base classifier ht(x) using Dt

• Choose αt

• Update, for i=1..m:

Output final classifier:

H(x) = sign(0.35×h1(x)+0.55×h2(x)+0.79×h3(x))

• h1(x)=+1 if x1>0.5, -1 otherwise

• h2(x)=+1 if x1<1.5, -1 otherwise

• h3(x)=+1 if x1<-0.5, -1 otherwise

Strong, weak classifiers
• If each classifier is (at least slightly) better than

random: t < 0.5

• Another bound on error:

• What does this imply about the training error?

– Will reach zero!

– Will get there exponentially fast!

• Is it hard to achieve better than random training error?

Boosting results – Digit recognition

• Boosting:
– Seems to be robust to overfitting
– Test error can decrease even after

training error is zero!!!

[Schapire, 1989]

Test error

Training error

Boosting generalization error bound

Constants:

• T: number of boosting rounds

– Higher T  Looser bound

• d: measures complexity of classifiers

– Higher d  bigger hypothesis space  looser bound

• m: number of training examples

– more data  tighter bound

[Freund & Schapire, 1996]

Boosting generalization error bound

Constants:

• T: number of boosting rounds:

– Higher T  Looser bound, what does this imply?

• d: VC dimension of weak learner, measures
complexity of classifier

– Higher d  bigger hypothesis space  looser bound

• m: number of training examples

– more data  tighter bound

[Freund & Schapire, 1996]

• Theory does not match practice:
• Robust to overfitting

• Test set error decreases even after training error is
zero

• Need better analysis tools
• we’ll come back to this later in the quarter

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps
(depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]

errorerror

e
rr

o
r

Boosting and Logistic Regression

Logistic regression equivalent
to minimizing log loss:

Boosting minimizes similar

loss function:

Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:

• Minimize loss fn

• Define

where each feature xj is
predefined

• Jointly optimize parameters
w0, w1, … wn via gradient
ascent.

Boosting:

• Minimize loss fn

• Define

where ht(x) learned to fit
data

• Weights j learned
incrementally (new one
for each training pass)

What you need to know about Boosting

• Combine weak classifiers to get very strong classifier

– Weak classifier – slightly better than random on training data

– Resulting very strong classifier – can get zero training error

• AdaBoost algorithm

• Boosting v. Logistic Regression

– Both linear model, boosting “learns” features

– Similar loss functions

– Single optimization (LR) v. Incrementally improving
classification (B)

• Most popular application of Boosting:

– Boosted decision stumps!

– Very simple to implement, very effective classifier

