Who needs probabilities?

- Previously: model data with distributions
 - Joint: $P(X,Y)$
 - e.g. Naïve Bayes
 - Conditional: $P(Y|X)$
 - e.g. Logistic Regression
- But wait, why probabilities?
- Lets try to be error-driven!
Generative vs. Discriminative

• Generative classifiers:
 – E.g. naïve Bayes
 – A joint probability model with evidence variables
 – Query model for causes given evidence

• Discriminative classifiers:
 – No generative model, no Bayes rule, often no probabilities at all!
 – Try to predict the label Y directly from X
 – Robust, accurate with varied features
 – Loosely: mistake driven rather than model driven
Discriminative vs. generative

- Generative model

 (The artist)

- Discriminative model

 (The lousy painter)

- Classification function

\[\text{label} = F_{\text{Zebra}}(\text{Data}) \]
Linear Classifiers

- Inputs are **feature values**
- Each feature has a **weight**
- Sum is the **activation**

\[
\text{activation}_w(x) = \sum_i w_i x_i = w \cdot x
\]

- If the activation is:
 - Positive, output **class 1**
 - Negative, output **class 2**
Example: Spam

• Imagine 3 features (spam is “positive” class):
 – free (number of occurrences of “free”)
 – money (occurrences of “money”)
 – BIAS (intercept, always has value 1)

<table>
<thead>
<tr>
<th>(\mathbf{x})</th>
<th>(\mathbf{w})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS : 1</td>
<td>BIAS : -3</td>
</tr>
<tr>
<td>free : 1</td>
<td>free : 4</td>
</tr>
<tr>
<td>money : 1</td>
<td>money : 2</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

\[\mathbf{w} \cdot \mathbf{x} > 0 \Rightarrow \text{SPAM!!!} \]
Binary Decision Rule

• In the space of feature vectors
 – Examples are points
 – Any weight vector is a hyperplane
 – One side corresponds to $y=+1$
 – Other corresponds to $y=-1$

\[w \cdot x = 0 \]
Binary Perceptron Algorithm

• Start with zero weights: \(w = 0 \)
• For \(t = 1..T \) (\(T \) passes over data)
 – For \(i = 1..n \): (each training example)
 • Classify with current weights
 \[y = \text{sign}(w \cdot x^i) \]
 – \(\text{sign}(x) \) is +1 if \(x > 0 \), else -1
 • If correct (i.e., \(y = y^i \)), no change!
 • If wrong: update
 \[w = w + y^i x^i \]
Examples: Perceptron

• Separable Case

Examples: Perceptron

- Inseparable Case
• For \(t=1..T, i=1..n: \)
 - \(y = \text{sign}(w \cdot x^i) \)
 - if \(y \neq y^i \)
 \(w = w + y^i x^i \)

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-2</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
<td>-3</td>
<td>1</td>
</tr>
</tbody>
</table>

Initial:
- \(w = [0,0] \)
 - \(t=1,i=1 \)
 - \([0,0]\cdot[3,2] = 0\), \(\text{sign}(0) = -1 \)
 - \(w = [0,0] + [3,2] = [3,2] \)
 - \(t=1,i=2 \)
 - \([3,2]\cdot[-2,2] = -2\), \(\text{sign}(-2) = -1 \)
 - \(t=1,i=3 \)
 - \([3,2]\cdot[-2,-3] = -12\), \(\text{sign}(-12) = -1 \)
 - \(w = [3,2] + [-2,-3] = [1,-1] \)
 - \(t=2,i=1 \)
 - \([1,-1]\cdot[3,2] = 1\), \(\text{sign}(1) = 1 \)
 - \(t=2,i=2 \)
 - \([1,-1]\cdot[-2,2] = -4\), \(\text{sign}(-4) = -1 \)
 - \(t=2,i=3 \)
 - \([1,-1]\cdot[-2,-3] = 1\), \(\text{sign}(1) = 1 \)

Converged!!!
- \(y = w_1 x_1 + w_2 x_2 \rightarrow y = x_1 + -x_2 \)
- So, at \(y=0 \rightarrow x_2 = x_1 \)
Multiclass Decision Rule

• If we have more than two classes:
 – Have a weight vector for each class: w_y
 – Calculate an activation for each class

\[
\text{activation}_w(x, y) = w_y \cdot x
\]

– Highest activation wins

\[
y^* = \arg \max_y (\text{activation}_w(x, y))
\]

Example: y is \{1,2,3\}
• We are fitting three planes: w_1, w_2, w_3
• Predict i when $w_i \cdot x$ is highest
Example

“win the vote”

\[x \]

BIAS	1
win	1
game	0
vote	1
the	1
...	

\[x \cdot w_{SPORTS} = 2 \]

\[x \cdot w_{POLITICS} = 7 \]

\[x \cdot w_{TECH} = 2 \]

POLITICS wins!!!
The Multi-class Perceptron Alg.

- Start with zero weights
- For $t=1..T$, $i=1..n$ (T times over data)
 - Classify with current weights
 \[y = \arg \max_y w_y \cdot x_i \]
 - If correct ($y=y_i$), no change!
 - If wrong: subtract features x_i from weights for predicted class w_y and add them to weights for correct class w_{y_i}
 \[
 w_y = w_y - x_i \\
 w_{y_i} = w_{y_i} + x_i
 \]
Linearly Separable (binary case)

- The data is linearly separable with margin γ, if:

$$\exists w. \forall t. y^t(w \cdot x^t) \geq \gamma > 0$$

- For $y^t=1$
 $$w \cdot x^t \geq \gamma$$

- For $y^t=-1$
 $$w \cdot x^t \leq -\gamma$$
Mistake Bound for Perceptron

- Assume data is separable with margin γ:
 \[\exists w^* \text{ s.t. } \|w^*\|_2 = 1 \text{ and } \forall t. y^t(w^* \cdot x^t) \geq \gamma \]

- Also assume there is a number R such that:
 \[\forall t. \|x^t\|_2 \leq R \]

- **Theorem:** The number of mistakes (parameter updates) made by the perceptron is bounded:
 \[\text{mistakes} \leq \frac{R^2}{\gamma^2} \]
Perceptron Convergence (by Induction)

• Let \(w^k \) be the weights after the \(k \)-th update (mistake), we will show that:

\[
k^2 \gamma^2 \leq \| w^k \|^2_2 \leq kR^2
\]

• Therefore:

\[
k \leq \frac{R^2}{\gamma^2}
\]

• Because \(R \) and \(\gamma \) are fixed constants that do not change as you learn, there are a finite number of updates!

• Proof does each bound separately (next two slides)
Lower bound

- Remember our margin assumption:
 \[\exists w^* \text{ s.t. } \|w^*\|_2 = 1 \text{ and } \forall t. y^t (w^* \cdot x^t) \geq \gamma \]
- Now, by the definition of the perceptron update, for k-th mistake on t-th training example:
 \[w^{k+1} \cdot w^* = (w^k + y^t x^t) \cdot w^* \]
 \[= w^k \cdot w^* + y^t (w^* \cdot x^t) \]
 \[\geq w^k \cdot w^* + \gamma \]
- So, by induction with \(w^0 = 0 \), for all k:
 \[k \gamma \leq w^k \cdot w^* \]
 \[\leq \|w^k\|_2 \]
 \[k^2 \gamma^2 \leq \|w^k\|_2^2 \]

Perceptron update:
\[w = w + y^t x^t \]

Because:
\[w^k \cdot w^* \leq \|w^k\|_2 \times \|w^*\|_2 \]
and \(\|w^*\|_2 = 1 \)
Upper Bound

- By the definition of the Perceptron update, for k-th mistake on t-th training example:

\[
\|w^{k+1}\|_2^2 = \|w^k + y^t x^t\|_2^2 \\
= \|w^k\|_2^2 + (y^t)^2 \|x^t\|_2^2 + 2y^t x^t \cdot w^k \\
\leq \|w^k\|_2^2 + R^2
\]

- So, by induction with \(w_0=0\) have, for all k:

\[
\|w_k\|_2^2 \leq kR^2
\]
Perceptron Convergence (by Induction)

• Let w^k be the weights after the k-th update (mistake), we will show that:

$$k^2 \gamma^2 \leq \|w^k\|_2^2 \leq kR^2$$

• Therefore:

$$k \leq \frac{R^2}{\gamma^2}$$

• Because R and γ are fixed constants that do not change as you learn, there are a finite number of updates!

• If there is a linear separator, Perceptron will find it!!!
From Logistic Regression to the Perceptron: 2 easy steps!

- **Logistic Regression:** (in vector notation): y is $\{0,1\}$
 \[
 w = w + \eta \sum_{j} [y^j - P(y^j | x^j, w)] x^j
 \]

- **Perceptron:** when y is $\{0,1\}$:
 \[
 w = w + [y^j - \text{sign}^0 (w \cdot x^j)] x^j
 \]
 • $\text{sign}^0(x) = +1$ if $x>0$ and 0 otherwise

Differences?

- Drop the Σ_j over training examples: **online vs. batch learning**
- Drop the dist’n: **probabilistic vs. error driven learning**
Properties of Perceptrons

• **Separability:** some parameters get the training set perfectly correct

• **Convergence:** if the training is separable, perceptron will eventually converge (binary case)

• **Mistake Bound:** the maximum number of mistakes (binary case) related to the margin or degree of separability

\[\text{mistakes} \leq \frac{R^2}{\gamma^2} \]
Problems with the Perceptron

- **Noise:** if the data isn’t separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- **Mediocre generalization:** finds a “barely” separating solution

- **Overtraining:** test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting
Linear Separators

- Which of these linear separators is optimal?
Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Support vector machines (SVMs) find the separator with max margin

\[\min_w \frac{1}{2} ||w||^2 \]

\[\forall i, y \quad w_y \cdot x^i \geq y \cdot x^i + 1 \]
Three Views of Classification (more to come later in course!)

• Naïve Bayes:
 – Parameters from data statistics
 – Parameters: probabilistic interpretation
 – Training: one pass through the data

• Logistic Regression:
 – Parameters from gradient ascent
 – Parameters: linear, probabilistic model, and discriminative
 – Training: gradient ascent (usually batch), regularize to stop overfitting

• The perceptron:
 – Parameters from reactions to mistakes
 – Parameters: discriminative interpretation
 – Training: go through the data until held-out accuracy maxes out