CSE446: Decision Tree Part2 Winter 2016

Ali Farhadi

So far ...

- Decision trees
- They will overfit
- How to split?
- When to stop?

What defines a good attribute?

Splitting: choosing a good attribute

Would we prefer to split on X_1 or X_2 ?

Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

X ₁	X_2	Υ
Т	Т	Τ
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad
 - What about distributions in between?

P(Y=A) = 1/2	P(Y=B) = 1/4	P(Y=C) = 1/8	P(Y=D) = 1/8
--------------	--------------	--------------	--------------

Entropy

Entropy H(Y) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Entropy Example

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

$$P(Y=t) = 5/6$$

 $P(Y=f) = 1/6$

$$H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$$

= 0.65

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conditional Entropy

Conditional Entropy H(Y|X) of a random variable Y conditioned on a random variable X

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

Example:

$$P(X_1=t) = 4/6$$

$$P(X_1=f) = 2/6$$

$$t \xrightarrow{X_1} f$$

Y=t:4 Y=t:1

Y=f: 0 Y=f: 1

$$H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$$
$$-2/6 (1/2 \log_2 1/2 + 1/2 \log_2 1/2)$$
$$= 2/6$$

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Information gain

Decrease in entropy (uncertainty) after splitting

$$IG(X) = H(Y) - H(Y \mid X)$$

- IG(X) is non-negative (>=0)
- Prove by showing H(Y|X) <= H(X), with Jensen's inequality

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow$ we prefer the split!

X ₁	X_2	Y
Τ	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

Suppose we want to predict MPG

Look at all the information gains...

A Decision Stump

First split looks good! But, when do we stop?

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

The problem with Base Case 3

$$y = a XOR b$$

а	b	У
О	0	0
О	1	1
1	0	1
1	1	0

The information gains:

Information gains using the training set (4 records)
y values: 0 1
Input Value Distribution Info Gain
a 0 0 0
1 0
1 0
1

The resulting decision tree:

If we omit Base Case 3:

y = a XOR b

а	b	У
0	0	0
0	1	1
1	0	1
1	1	0

Is it OK to omit Base Case 3?

The resulting decision tree:

Summary: Building Decision Trees

BuildTree(DataSet,Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_x distinct values (i.e. X has arity n_x).
 - Create a non-leaf node with n_x children.
 - The i'th child should be built by calling

BuildTree(DS_i,Output)

Where DS_i contains the records in DataSet where X = ith value of X.

Decision trees will overfit!!!

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Fixed number of leaves
 - Or something smarter...

Decision trees will overfit!!!

One Definition of Overfitting

- Assume:
 - Data generated from distribution D(X, Y)
 - A hypothesis space H
- Define errors for hypothesis $h \in H$
 - Training error: error_{train}(h)
 - Data (true) error: error_D(h)
- We say h overfits the training data if there exists an h' ∈ H such that:

$$error_{train}(h) < error_{train}(h')$$
 and
$$error_{D}(h) > error_{D}(h')$$

Occam's Razor

- Why Favor Short Hypotheses?
- Arguments for:
 - Fewer short hypotheses than long ones
 - → A short hyp. less likely to fit data by coincidence
 - →Longer hyp. that fit data may might be coincidence
- Arguments against:
 - Argument above really uses the fact that hypothesis space is small!!!
 - What is so special about small sets based on the size of each hypothesis?

How to Build Small Trees

Two reasonable approaches:

- Optimize on the held-out (development) set
 - If growing the tree larger hurts performance, then stop growing!!!
 - Requires a larger amount of data...
- Use statistical significance testing
 - Test if the improvement for any split it likely due to noise
 - If so, don't do the split!

A Chi Square Test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 13.5%

We will not cover Chi Square tests in class. See page 93 of the original ID3 paper [Quinlan, 86].

Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which $p_{chance} > MaxPchance$
 - Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Pruning example

 With MaxPchance = 0.05, you will see the following MPG decision tree:

When compared to the unpruned tree

- improved test set accuracy
- worse training accuracy

	Num Errors	Set Size	Percent Wrong
Training Set	5	40	12.50
Test Set	56	352	15.91

MaxPchance

 Technical note: MaxPchance is a regularization parameter that helps us bias towards simpler models

We'll learn to choose the value of magic parameters like this one later!

Real-Valued inputs

What should we do if some of the inputs are real-valued?

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:		:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

- Binary tree: split on attribute X at value t
 - One branch: X < t</p>
 - Other branch: X ≥ t
 - Requires small change
 - Allow repeated splits on same variable
 - How does this compare to "branch on each value" approach?

The set of possible thresholds

- Binary tree, split on attribute X
 - One branch: X < t</p>
 - Other branch: X ≥ t
- Search through possible values of t
 - Seems hard!!!
- But only finite number of t's are important
 - Sort data according to X into $\{x_1,...,x_m\}$
 - Consider split points of the form $x_i + (x_{i+1} x_i)/2$

Picking the best threshold

- Suppose X is real valued with threshold t
- Want IG(Y|X:t): the information gain for Y when testing if X is greater than or less than t
- Define:
 - H(Y|X:t) = H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)
 - IG(Y|X:t) = H(Y) H(Y|X:t)
 - $IG^*(Y|X) = max_t IG(Y|X:t)$
- Use: IG*(Y|X) for continuous variables

Example with MPG

Example tree for our continuous dataset

What you need to know about decision trees

- Decision trees are one of the most popular ML tools
 - Easy to understand, implement, and use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials