CSE 446
Learning Theory
Administrative

• Quiz section next week: midterm problems & answers, differentiation review

• Lecture next week
 – Will post video lectures for Wed & Fri
 – TA will go over material in detail in class and answer questions
Bias- Variance tradeoff – Intuition

• Model too simple: does not fit the data well
 – A *biased* solution
 – Simple = fewer features
 – Simple = more regularization

• Model too complex: small changes to the data, solution changes a lot
 – A *high-variance* solution
 – Complex = more features
 – Complex = less regularization
Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class \rightarrow less bias
 - More complex class \rightarrow more variance
Error as a function of number of training examples for a fixed model complexity

\[\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2 \]

\[\mathcal{E}_{\text{true}}(w) = E_p(x) \]

\[\mathcal{E}_{\text{test}}(w) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2 \]

little data

infinite data

bias
Measuring Bias and Variance

- In practice (unlike in theory), only **ONE training set** D
- Simulate multiple training sets by **bootstrap replicates**
 - $D' = \{ x \mid x \text{ is drawn at random with replacement from } D \}$
 - $|D'| = |D|$
Estimating Bias / Variance

Original Data Bootstrap Replicate

\[S \]

\[S_1 \rightarrow T_1 = S / S_1 \]

Learning Alg

\[h_1 \]

\[\{ h_1(x) | x \in T_1 \} \]
Estimating Bias / Variance

<table>
<thead>
<tr>
<th>Original Data</th>
<th>Bootstrap Replicate</th>
<th>Hypothesis</th>
<th>h’s predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_i</td>
<td>T_i</td>
<td>h_i</td>
<td>${ h_i(x) \mid x \in T_i }$</td>
</tr>
<tr>
<td>S_{b}</td>
<td>T_{b}</td>
<td>h_b</td>
<td>${ h_b(x) \mid x \in T_{b} }$</td>
</tr>
</tbody>
</table>

- Each S_i is bootstrap replicate
- $T_i = S / S_i$
- h_i = hypothesis, based on S_i
Average Response for each x_i

$\in? T_1$	$h_1(x_1)$...	
$\in? T_2$	--	...	$h_2(x_r)$
...			
$\in? T_b$	$h_b(x_1)$...	$h_b(x_r)$

$h(x_i) = \frac{1}{k_i} \Sigma h_i(x_i)$ \hspace{0.5cm} ... \hspace{0.5cm} h(x_r) = \frac{1}{k_r} \Sigma h_i(x_r)$

$h(x_j) = \Sigma_{\{i: x \in T_i\}} h_i(x_j) / \|\{i: x \in T_i\}\|$
Procedure for Measuring Bias and Variance

- Construct B bootstrap replicates of S, S_1, ..., S_B
- Apply learning alg to each replicate S_b to obtain hypothesis h_b
- Let $T_b = S \setminus S_b = \text{data points not in } S_b$ (out of bag points)
- Compute predicted value $h_b(x)$ for each $x \in T_b$
Estimating Bias and Variance

- For each $x \in S$,
 - observed response y
 - predictions y_1, \ldots, y_k
- Compute average prediction $h(x) = \text{ave}_i \{y_i\}$
- Estimate bias: $h(x) - y$
- Estimate variance:
 $$\sum_{\{i: x \in T_i\}} (h_i(x) - \bar{h(x)})^2 / (k-1)$$
- Assume noise is 0