CSE 446 Learning Theory

Administrative

- Quiz section next week: midterm problems & answers, differentiation review
- Lecture next week
 - Will post video lectures for Wed & Fri
 - TA will go over material in detail in class and answer questions

Bias-Variance tradeoff – Intuition

- Model too simple: does not t
 fit the data well
 - A *biased* solution
 - Simple = fewer features
 - Simple = more regularization

- Model too complex: small changes to the data, solution changes a lot
 - A *high-variance* solution
 - Complex = more features
 - Complex = less regularization

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class \rightarrow less bias
 - More complex class \rightarrow more variance

little data

infinite data

Measuring Bias and Variance

- In practice (unlike in theory), only ONE training set D
 - Simulate multiple training sets by bootstrap replicates
 - D' = {x | x is drawn at random with replacement from D }
 - $\Box |\mathsf{D}'| = |\mathsf{D}|$

Slides from C Guestrin, T Dietterich, R Parr, N Ray, R Greiner

Estimating Bias / Variance

Estimating Bias / Variance

Average Response for each x_i

Procedure for Measuring Bias and Variance

- Construct B bootstrap replicates of S S₁, ..., S_B
- Apply learning alg to each replicate S_b to obtain hypothesis h_b
- Let T_b = S \ S_b = data points not in S_b (out of bag points)
- Compute predicted value h_b(x) for each x ∈ T_b

Estimating Bias and Variance

- For each $x \in S$,
 - observed response y
 - \Box predictions $y_1, ..., y_k$
- Compute average prediction <u>h(x)</u> = ave_i {y_i}
- Estimate bias: <u>h(x)</u> y
- Estimate variance:
 - $\Sigma_{\{i: \ x \ \in \ Ti\}} \ (\ h_i(x) \underline{h(x)} \)^2 \ / \ (k-1)$
- Assume noise is 0