CSE 446
Sequences, Conclusions
Administrative

• Final exam next week Wed Jun 8 8:30 am
• Last office hours after class today
Sequence Models

- High level overview of structured data
- What kind of structure? Temporal structure:

\[
x_i = \begin{bmatrix}
 x_{1,i} \\
 x_{2,i} \\
 \vdots \\
 x_{T,i}
\end{bmatrix}
\]

- Sequential data
 - Time-series data
 E.g. Speech
 - Characters in a sentence
 - Base pairs along a DNA strand
Markov Model

\[\mathbf{x}_i = \begin{bmatrix} x_{1,i} \\ x_{2,i} \\ \vdots \\ x_{T,i} \end{bmatrix} \]

\[x_{i,t} \in \{1, 2, \ldots, K\} \]

\[p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2) \cdots p(x_T|x_{T-1}) \]
Hidden Markov Model

\[p(x_t|h_t) \quad p(h_t|h_{t-1}) \]
Hidden Markov Model for Classification

• Condition transitions on label – different transition model for each label

• Use just like naïve Bayes: evaluate probability of a test sequence given every possible label

• Often label is left out of the math, but it’s there...

\[
p(x_{1:T} | y = \ell) \propto \sum_{h_1, h_2, \ldots, h_T} p(h_{1:T}, x_{1:T} | y = \ell)
\]

\[
p(x_{1:T} | y = \ell) \propto \sum_{h_1, h_2, \ldots, h_T} p_\ell(h_{1:T}, x_{1:T})
\]

different model for each label
same thing
Hidden Markov Model
Applications

• Extremely popular for speech recognition
• 1 HMM = 1 phoneme
• Given a segment of audio, figure out which HMM gives it highest probability
Continuous *and* Nonlinear?

- Nonlinear continuous sequence model: recurrent neural network

\[
p(y_t = k|h_t) = \frac{\exp(-W_k h_t)}{\sum_{k'=1}^{K} \exp(-W_{k'} h_t)}
\]

\[
h_{t+1} = \sigma(W_h h_t + b_h)
\]
\[
h_{t+1} = \sigma(W_h h_t + W_x x_t + b_h)
\]
\[
h_{t+1} = \sigma(W_h h_t + W_x x_t + W_y y_t + b_h)
\]
\[
h_{t+1} = \sigma(W_h h_t + W_y y_t + b_h)
\]
RNN Application: Machine Translation

\[p(y_t = k| h_t) = \frac{\exp(-W_k h_t)}{\sum_{k'=1}^{K} \exp(-W_{k'} h_t)} \]

\[h_{t+1} = \sigma(W_h h_t + W_x x_t + W_y y_t + b_h) \]

"thought vector"

\[y_t \]
\[h_t \]
\[x_t \]

read in French

write in English

Sutskever et al. 2014
RNN Application: Language Modeling

\[p(y_t = k| h_t) = \frac{\exp(-W_k h_t)}{\sum_{k'=1}^{K} \exp(-W_{k'} h_t)} \]

\[h_{t+1} = \sigma(W_h h_t + W_y y_t + b_h) \]
RNN Training

• Almost always use backpropagation + stochastic gradient descent/gradient ascent
 – No different than any other neural network
 – Just have many outputs (and inputs)
 – Compute gradients and use chain rule
 • Per time step instead of per layer
 • Math is exactly the same

• But it’s very hard to optimize...
Why RNN Training is Hard

- Backpropagation = chain rule
- Derivative multiplied by new matrix at each time step (time step in RNN = layer in NN)
- Lots of multiplication by values less than 1 = gradients become tiny
- Lots of multiplication by values greater than 1 = gradients explode
- Many tricks for effective training
 - Clever nonlinearity (e.g. LSTM – special type of nonlinearity)
 - Better optimization algorithms (more advanced than gradient descent)

\[
\frac{d\mathcal{L}(y_T)}{dh_2} = \frac{d\mathcal{L}(y_T)}{dh_T} \frac{dh_T}{dh_{T-1}} \cdots \frac{dh_3}{dh_2}
\]

lots of multiplication
very unstable numerically
RNN Application: Text Generation

- http://www.cs.toronto.edu/~ilya/fourth.cgi

The meaning of life is any older bird. Get into an hour performance, in the first time period in...
PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.
RNN does algebraic geometry (maybe it can write my lecture notes?)

For $\bigoplus_{n=1,\ldots,m}$ where $L_{m*} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \text{Spec}(R) = U \times_X U \times_X U$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points \mathcal{S}_{ppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ???. Hence we obtain a scheme S and any open subset $W \subset U$ in $\text{Sh}(G)$ such that $\text{Spec}(R^i) \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\text{GL}_{S'}(x'/S'')$ and we win.

From Andrej Karpathy
RNN does operating system code

```c
/*
 * If this error is set, we will need anything right after that BSD.
 */

static void action_new_function(struct s_stat_info *wb)
{
    unsigned long flags;
    int lel_idx_bit = e->edd, *sys & ~(unsigned long) *FIRST_COMPAT);
    buf[0] = 0xFFFFFFFF & (bit << 4);
    min(inc, slist->bytes);
    printk(KERN_WARNING "Memory allocated %02x/%02x, "
        "original MLL instead\n"),
    min(min(multi_run - s->len, max) * num_data_in),
    frame_pos, sz + first_seg);
    div_u64_w(val, inb_p);
    spin_unlock(&disk->queue_lock);
    mutex_unlock(&s->sock->mutex);
    mutex_unlock(&func->mutex);
    return disassemble(info->pending_bh);
}
```
RNN does clickbait...

Romney Camp: ‘I Think You Are A Bad President’
Here’s What A Boy Is Really Doing To Women In Prison Is Amazing
L.A.’s First Ever Man Review
Why Health Care System Is Still A Winner
Why Are The Kids On The Golf Team Changing The World?
21 Of The Most Life – Changing Food Magazine Moments Of 2013
More Problems For ‘Breaking Bad’ And ‘Real Truth’ Before Death
Raw: DC Helps In Storm Victims’ Homes
U.S. Students’ Latest Aid Problem
Beyoncé Is A Major Woman To Right – To – Buy At The Same Time
Taylor Swift Becomes New Face Of Victim Of Peace Talks
Star Wars: The Old Force: Gameplay From A Picture With Dark Past (Part 2)
Sarah Palin: ‘If I Don’t Have To Stop Using ‘Law, Doesn’t Like His Brother ‘s Talk On His ‘Big Media’
Israeli Forces: Muslim – American Wife ‘s Murder To Be Shot In The U.S.
And It’s A ‘Celebrity’
Mary J. Williams On Coming Out As A Woman
Wall Street Makes $1 Billion For America: Of Who ‘s The Most Important Republican Girl?
How To Get Your Kids To See The Light
Kate Middleton Looks Into Marriage Plans At Charity Event
Adorable High – Tech Phone Is Billion – Dollar Media

From Lars Eidnes
Concluding Remarks

• Summary: anatomy of a machine learning problem
• How to tackle a machine learning problem
• Where to go from here
• What we didn’t cover
Anatomy of a Machine Learning Problem

• Data
 – This is what we learn from

• Hypothesis space
 – Also called: model class, parameterization (though not all models are parametric...), etc.
 – This is what we learn

• Objective
 – Also called: loss function, cost function, etc.
 – This is the goal for our algorithm
 – Usually not the same as the overall goal of learning (training error vs generalization error)

• Algorithm
 – This is what optimizes the objective
 – Sometimes the optimization is not exact (e.g. k-means)
 – Sometimes the optimization is heuristic (e.g. decision trees)
How to Tackle a Machine Learning Problem

• Look at your data
 – What is its structure?
 – What domain knowledge do you have?
 – Plot something, cluster something, etc.
• Split into training and validation (remember, it’s not a test set if you use it to tune hyperparameters...)
• Define the problem
 – What are the inputs and (if any) outputs?
 – What kind of objective should you use?
 • Usually either a probabilistic generative process, or a discriminative approach
• Choose a few possible hypothesis classes (including features...), experiment
• Troubleshoot & improve
 – Look for overfitting or underfitting
 – Look for overfitting or underfitting
 – Modify hypothesis class and features
Where to go From Here

• This course provides a high-level sampling of various ML topics
 – Classification
 – Regression
 – Unsupervised learning
• There is much more depth behind each topic
• Here is a summary of modernized versions of some of the methods we covered
Decision Trees

• Almost never used individually
• Typically used with model ensembles
 – See bagging lecture and section on random forests
• Some of the most popular models in practice
Naïve Bayes

- Generalizes to Bayesian networks
 - Includes Markov models, hidden Markov models, Gaussian mixture models
- Generalizes to Markov random fields
 - Model dependencies on networks
Logistic Regression

- Generalizes to neural networks
- Very flexible class of models
- Popular for a wide range of applications
 - Same tradeoff as naïve Bayes vs. logistic regression:
 - More data = neural network does well
 - Less data = neural network overfits, probabilistic Bayesian methods tend to do better
Neural Networks

• For image processing: convolutional neural networks

• For language, speech: recurrent neural networks
Bayesian networks are typically generative
- Can sample (generate) new data from the model
- Can easily train on partial data (e.g. via EM)

Neural networks are typically discriminative
- Can predict label, but can’t generate data
- Hard to deal with partial data

Generative neural networks?
- Good for training with lots of unlabeled data and a little bit of labeled data
- Can hallucinate some interesting images
Support Vector Machines & Kernels

• Widely used with kernels
• Kernels allow for linear models to become extremely powerful nonlinear nonparametric models
 – Kernelized SVM
 – Kernelized linear regression (Gaussian process)
• Great when data is very limited
Unsupervised Learning

• Nonlinear dimensionality reduction
 – Reduce dimensionality much further while preserving more information
 – Intuition is to “unfold” nonlinear manifold into a low-dimensional space
Concluding Remarks

• Machine learning draws on several disciplines
 – Computer science
 – Statistics
 – Artificial intelligence
• Can be viewed as methods to process data
 – “data science”
• Can be viewed as methods to make machines more intelligent
• This is an engineering course
• Machine learning is engineering, but it is also science
• Scientific question: how to understand (and create) intelligence?
• (classic) artificial intelligence: design algorithms that act intelligently with common sense
 – Heuristic planning
 – Mixture of experts
• Learning: design algorithms that figure out on their own how to act intelligently, from experience

Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one which simulates the child's? If this were then subjected to an appropriate course of education one would obtain the adult brain.

- Alan Turing