
Week 6: Support Vector Machines

Instructor: Sergey Levine

1 Support vector machines recap

The support vector machine (SVM) optimization is defined as

min
w,w0,s1,...,sN

1

2
||w||2 + λ

N∑
i=1

si such that

yi(w · h(xi) + w0) + si ≥ 1 ∀i ∈ {1, . . . , N}
si ≥ 0 ∀i ∈ {1, . . . , N}

As we saw in the previous lecture, solving this optimization recovers a linear
classifier of the form y = sign(w ·h(x)+w0) that minimizes the hinge loss for all
misclassified points and maximizes the size of the margin (the distance to the
closest point to the decision boundary). The term “support vector” refers to
the vectors from the decision boundary to the closest points. Note that moving
any point that is correct classified and further from the decision boundary than
the margin will not affect the optimal weights, hence the term “support vector:”
these vectors “support” the boundary, while all others do not.

2 Revisiting features

Note that SVMs are still linear classifiers, but just like we saw with logistic and
linear regression, “linear” refers to the function being linear in the weights, not
necessarily in the input x, since we can use a complex feature vector h(x) to
create decision boundaries that are not linear in the input space. This idea is
very powerful. For example, even low-order polynomial features can allow for
very complex decision boundaries, and SVMs are great at learning good large-
margin decision boundaries for high-dimensional features. This increases the
risk of overfitting, but can allow us to learn classifiers that would be impossible
otherwise.

Unfortunately, if the input is high-dimensional, incorporating highly expres-
sive features like polynomials can dramatically increase the size of the feature
vector. For example, if we add all monomial features of degree D (i.e. x1x2x

2
3

is a monomial of degree 4, so is x41 or x22x
2
3), and the dimensionality of x is M ,

the total number of features is:(
D +M − 1

D

)
=

(D +M − 1)!

D!(M − 1)!
.

1

So even for relatively low-order polynomials, the number of features can be very
large. For example, if D = 6 and M = 100, we get about 1.6 billion features.
We could design our features more carefully to manually select just the ones
that matter, but there is a better way. Note that in the SVM, every time we
see w or h(x), they always appear as a dot product: we have w · h(xi) and
||w||2 = w ·w. So if we had an efficient way to evaluate dot products, maybe
we can avoid actually enumerating all 1.6 billion features!

Note that even if the number of features is huge, taking a dot product of two
feature vectors might not be so bad. Say we have two-dimensional inputs (u1, u2)
and (v1, v2). If our feature vector is h(u) = [u1, u2] – that is, all monomials of
degree 1 – then clearly h(u) · h(v) = u · v. Now let’s say we have h(u) =
[u21, u1u2, u2u1, u

2
2]: that is, all monomials of degree 2. What is h(u) · h(v)?

Well, we can evaluate it:

h(u) ·h(v) =

u21
u1u2
u2u1
u22

 ·

v21
v1v2
v2v1
v22

 = u21v
2
1 +2u1u2v1v2 +u22v

2
2 = (u1v1 +u2v2)2.

But the last expression is simply (u · v)2. Indeed, we can show that for any
feature vector that consists of monomials of degree D, h(u) · h(v) = (u · v)D,
which means that if we only ever take dot products of our feature vectors, we
can have features with some huge degree D and still have compute times that
are independent of D.

3 Kernels

Kernels are basically functions of the formK(u,v) that compute the dot product
in some high-dimensional feature space of the vectors h(u) and h(v) without
ever forming the feature vectors explicitly.

Question. Can we define a kernel K(u,v) for the case where h(u) contains
all monomials of degree D?

Answer. Based on the derivation above, we can define K(u,v) = (u · v)D.
Note that D here is a hyperparameter of the kernel, and we can choose it either
using our intuition or using cross-validation (in the context of a model like
kernalized SVMs, which we’ll discuss next).

Here are a few examples of commonly used kernels:

1. K(u,v) = (u · v)D: as we saw above, this corresponds to h(u) containing
all monomials of degree D.

2. K(u,v) = (u · v + 1)D: this corresponds to h(u) containing all monomials
up to degree D.

2

3. K(u,v) = exp
(
− ||u−v||

2

2`

)
: this kernel, called the squared exponential or

Gaussian kernel, is very commonly used and corresponds to an infinite feature
space h(u). This infinite feature space is formed by using features of the follow-
ing form:

hc(u) = exp

(
−||u− c||

2

2`

)
This is a radial basis function feature with a center at c. It is 1 if u = c, and
falls off as u gets further away. If we tile the centers c in a regular grid pattern,
we can think of these features as a kind of soft discretization of the space. The
squared exponential kernel can be shown to be the dot product of two feature
vectors consisting of these radial basis function features, with an infinite number
of centers that densely tile the entire space on which u is defined!

4 Kernalized SVMs

Now that we know how to evaluate dot products of feature vectors efficiently in
feature spaces that are extremely large (or even infinite in size), how can we use
this “kernel trick” inside the SVM? First, we have to figure out how to represent
the weights w, since the size of the weights vector is equal to the number of
features (which is now huge or even infinite).

To derive an idea for how to do this, let’s briefly go back to the perceptron
algorithm (and forget about the margin for now). Remember that for the per-
ceptron, we trained the weights w by incrementing for them for all incorrectly
classified datapoints according to:

w← w + yih(xi).

What if instead of storing w directly, we simply store a weight on each datapoint,
denoted αi? Then we can always recover w as:

w =

N∑
i=1

αih(xi),

and the perceptron algorithm simply increments the weight on each incorrectly
classified datapoint according to

αi ← αi + yi.

That way, when we recover w =
∑N
i=1 αih(xi) we get exactly the same answer.

We can do the same thing for the SVM (I won’t derive this, but it’s called the
Representer Theorem), and then all we have to do when we take a dot product
with the feature weights is:

w · h(xj) =

N∑
i=1

αi(h(xi) · h(xj) =

N∑
i=1

αiK(xi,xj),

3

and we never have to explicitly represent w! So the parameters of our hypothesis
class are now the weights αi, and our method is now non-parametric, which
means we never explicitly store the parameters w, but only a weight αi on each
datapoint. If the number of features is much larger than the size of the dataset,
this makes our method more efficient. To recover the kernalized SVM, we now
only need to evaluate

||w||2 = w ·w =

[
N∑
i=1

αih(xi)

]
·

 N∑
j=1

αjh(xj)

 =

N∑
i=1

N∑
j=1

αiαjK(xi,xj)

If we construct a matrix K such that Kij = K(xi,xj), then we can write the
above equation in matrix notation as

||w||2 = αTKα,

where α is the vector of weights. So the full kernalized SVM optimization is
given by

min
α,w0,s1,...,sN

1

2
αTKα+ λ

N∑
i=1

si such that

yi

 N∑
j=1

αjK(xi,xj)

+ w0

+ si ≥ 1 ∀i ∈ {1, . . . , N}

si ≥ 0 ∀i ∈ {1, . . . , N}

Note that the constraints are still linear in α, w0, and s, and the objective is still
quadratic in all of the variables, so we can still solve this optimization problem
using any standard QP solver, or specialized solvers for SVMs. We can also
derive an unconstrained objective just like we did before, by noting that

si = max

0, 1− yi
 N∑

j=1

αjK(xi,xj)

+ w0

 ,

giving the unconstrained problem

min
α,w0

1

2
αTKα+ λ

N∑
i=1

max

0, 1− yi
 N∑

j=1

αjK(xi,xj)

+ w0

 .

5 SVM Interactive Demo

See this page: http://cs.stanford.edu/people/karpathy/svmjs/demo/
Try both linear and RBF (squared exponential) kernels. Here, C denotes λ,

the weight on the slack variables.

4

http://cs.stanford.edu/people/karpathy/svmjs/demo/

6 Multiclass SVMs

Lastly, we’ll briefly discuss how we can use SVMs when we have more than
two classes. There are two main approaches we’ll discuss: (1) one-against-all
classifiers and (2) multiclass SVMs.

One-against-all classification is the simplest way to adapt SVMs to multiclass
classification. In this scheme, instead of solving a single learning problem with
Ly classes, we instead solve Ly binary problems, each of which requires us to
classify the current class j against all other classes. So we simply construct Ly
datasets, for each of which the label is yij = δ(yi = j), and we get Ly weight
vectors w1, . . . ,wLy

. Now we just need to figure out how to classify a new point
x?. The idea is very simple: the further the point is from the decision boundary
in the “positive” direction, the more likely we think it is to belong to that class.
So we simply choose the point for which the point is furthest from the boundary
in the positive direction, and set the class according to:

y? = arg max
j
h(x?) ·wj .

One-against-all classification is reasonable and can work quite well, though it
requires training multiple SVMs. Next week, we’ll also talk about how we can
build multiclass SVMs directly.

5

	Support vector machines recap
	Revisiting features
	Kernels
	Kernalized SVMs
	SVM Interactive Demo
	Multiclass SVMs

