CSE 446
Bias-Variance & Naïve Bayes
Administrative

• Homework 1 due next week on **Friday**
 – Good to finish early

• Homework 2 is out on **Monday**
 – Check the course calendar
 – Start early (midterm is right before Homework 2 is due!)
Today

• Finish linear regression: discuss bias & variance tradeoff
 – Relevant to other ML problems, but will discuss for linear regression in particular

• Start on Naïve Bayes
 – Probabilistic classification method
Bias-Variance tradeoff – Intuition

• Model too simple: does not fit the data well
 – A *biased* solution
 – Simple = fewer features
 – Simple = more regularization

• Model too complex: small changes to the data, solution changes a lot
 – A *high-variance* solution
 – Complex = more features
 – Complex = less regularization
Bias-Variance Tradeoff

• Choice of hypothesis class introduces learning bias
 – More complex class \rightarrow less bias
 – More complex class \rightarrow more variance
Training set error

• Given a dataset (Training data)
• Choose a loss function
 – e.g., squared error (L_2) for regression
• **Training error**: For a particular set of parameters, loss function on training data:

$$\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2$$
Training error as a function of model complexity

$$\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2$$
Prediction error

• Training set error can be poor measure of “quality” of solution

• Prediction error (true error): We really care about error over all possibilities:

\[
\mathcal{E}_{\text{true}}(w) = E_{p(x)} \left[(x_i \cdot w - y_i)^2 \right]
\]

\[
= \int p(x) (x_i \cdot w - y_i)^2 \, dx
\]
Prediction error as a function of model complexity

\[\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2 \]

\[\mathcal{E}_{\text{true}}(w) = E_p(x) \]
Computing prediction error

• To correctly predict error
 • Hard integral!
 • May not know y for every x, may not know $p(x)$

$$\mathcal{E}_{\text{true}}(w) = \int p(x) (x_i \cdot w - y_i)^2 \, dx$$

• Monte Carlo integration (sampling approximation)
 • Sample a set of i.i.d. points $\{x_1, \ldots, x_M\}$ from $p(x)$
 • Approximate integral with sample average

$$\mathcal{E}_{\text{true}}(w) \approx \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2$$
Why training set error doesn’t approximate prediction error?

• Sampling approximation of prediction error:

\[\mathcal{E}_{\text{true}}(w) \approx \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2 \]

• Training error:

\[\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2 \]

• Very similar equations
 – Why is training set a bad measure of prediction error?
Why training set error doesn’t approximate prediction error?

• Sampling approximation of prediction error:

\[\mathcal{E}_{\text{true}}(w) \approx \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2 \]

• Training error:

\[\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2 \]

• Very important:
 - \(w \) was optimized with respect to the training error!
 - Training error is a (optimistically) biased estimate of prediction error
Test set error

• Given a dataset, **randomly** split it into two parts:
 – Training data – \(\{ x_1, \ldots, x_{N_{\text{train}}} \} \)
 – Test data – \(\{ x_1, \ldots, x_{N_{\text{test}}} \} \)

• Use training data to optimize parameters \(w \)

• **Test set error**: For the *final solution* \(w^* \), evaluate the error using:

\[
E_{\text{test}}(w) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2
\]
Test set error as a function of model complexity

\[E_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2 \]

\[E_{\text{true}}(w) = E_p(x) \]

\[E_{\text{test}}(w) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2 \]
Overfitting (again)

• Assume:
 – Data generated from distribution $D(X,Y)$
 – A hypothesis space H

• Define: errors for hypothesis $h \in H$
 – Training error: $error_{train}(h)$
 – Data (true) error: $error_{true}(h)$

• We say h **overfits** the training data if there exists an $h' \in H$ such that:

\[
error_{train}(h) < error_{train}(h') \quad \text{and} \quad error_{true}(h) > error_{true}(h')
\]
Summary: error estimators

- Gold Standard:
 \[\mathcal{E}_{\text{true}}(w) = \int p(x) (x_i \cdot w - y_i)^2 \, dx \]

- Training: optimistically biased
 \[\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2 \]

- Test: our final measure
 \[\mathcal{E}_{\text{test}}(w) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2 \]
Error as a function of number of training examples for a fixed model complexity

\[\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2 \]

\[\mathcal{E}_{\text{true}}(w) = E_p(x) \]

\[\mathcal{E}_{\text{test}}(w) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2 \]

little data \quad \text{bias} \quad \text{infinite data}
Error as function of regularization parameter, fixed model complexity

\[\mathcal{E}_{\text{train}}(w) = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (x_i \cdot w - y_i)^2 \]

\[\mathcal{E}_{\text{true}}(w) = E_{p(x)}(x_i \cdot w - y_i)^2 \]
Summary: error estimators

- Gold Standard:

- Training: optimistically biased

- Test: our final measure

Be careful

Test set only unbiased if you never do any learning on the test data

If you need to select a hyperparameter, or the model, or anything at all, use the validation set (also called a holdout set, development set, etc.)

\[
\mathcal{E}_{\text{test}}(w) = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} (x_i \cdot w - y_i)^2
\]
What you need to know
(linear regression)

• Regression
 – Basis function/features
 – Optimizing sum squared error
 – Relationship between regression and Gaussians

• Regularization
 – Ridge regression math & derivation as MAP
 – LASSO formulation
 – How to set lambda (hold-out, K-fold)

• Bias-Variance trade-off
Back to Classification

- **Given:** Training set \(\{(x_i, y_i) \mid i = 1 \ldots n\} \)
- **Find:** A good approximation to \(f : X \rightarrow Y \)

Examples: what are \(X \) and \(Y \)?
- **Spam Detection**
 - Map email to \{Spam, Ham\}
- **Digit recognition**
 - Map pixels to \{0,1,2,3,4,5,6,7,8,9\}
- **Stock Prediction**
 - Map new, historic prices, etc. to \(\text{the real numbers} \)
Can we Frame Classification as MLE?

- In linear regression, we learn the conditional $P(Y|X)$
- Decision trees also model $P(Y|X)$
- $P(Y|X)$ is complex (hence decision trees cannot be built optimally, but only greedily)
- What if we instead model $P(X|Y)$?
- [see lecture notes]
MLE for the parameters of NB

• Given dataset
 – Count(A=a,B=b): number of examples with A=a and B=b

• MLE for discrete NB, simply:
 – Prior:
 \[p(y = j) = \frac{\text{Count}(y = j)}{\sum_{j'} \text{Count}(y = j')} \]
 – Likelihood:
 \[p(x_k = \ell | y = j) = \frac{\text{Count}(x_k = \ell \text{ and } y = j)}{\sum_{\ell'} \text{Count}(x_k = \ell' \text{ and } y = j')} \]
A Digit Recognizer

• **Input:** pixel grids

![Pixel Grid]

• **Output:** a digit 0-9
Naïve Bayes for Digits (Binary Inputs)

• Simple version:
 – One feature F_{ij} for each grid position $<i,j>$
 – Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 – Each input maps to a feature vector, e.g.
 $$\begin{pmatrix} 1 \end{pmatrix} \rightarrow (F_{0,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 1 \ F_{0,3} = 1 \ F_{0,4} = 0 \ \cdots \ F_{15,15} = 0)$$
 – Here: lots of features, each is binary valued

• Naïve Bayes model:
 $$P(Y|F_{0,0} \cdots F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

• Are the features independent given class?
• What do we need to learn?
Example Distributions

\(P(Y) \)

\[
\begin{array}{c|c}
1 & 0.1 \\
2 & 0.1 \\
3 & 0.1 \\
4 & 0.1 \\
5 & 0.1 \\
6 & 0.1 \\
7 & 0.1 \\
8 & 0.1 \\
9 & 0.1 \\
0 & 0.1 \\
\end{array}
\]

\(P(F_{3,1} = \text{on}|Y) \) \(P(F_{5,5} = \text{on}|Y) \)

\[
\begin{array}{c|c}
1 & 0.01 \\
2 & 0.05 \\
3 & 0.05 \\
4 & 0.30 \\
5 & 0.80 \\
6 & 0.90 \\
7 & 0.05 \\
8 & 0.60 \\
9 & 0.50 \\
0 & 0.80 \\
\end{array}
\]

\[
\begin{array}{c|c}
1 & 0.05 \\
2 & 0.01 \\
3 & 0.90 \\
4 & 0.80 \\
5 & 0.90 \\
6 & 0.90 \\
7 & 0.25 \\
8 & 0.85 \\
9 & 0.60 \\
0 & 0.80 \\
\end{array}
\]