CSE 446: Week 1 Decision Trees

Administrative Details

- Reminder: sign up for Piazza
- Only a few sections this quarter
 - Please come to office hours! They're there to help
 - Naozumi: Wed 13:30 CSE 220
 - Akshay: Fri 11:00 CSE 218
 - Isaac: Tue 12:00 CSE 220
 - Sergey: Mon 10:30 CSE 528
 - Start on homeworks early and get help as needed
- Should we have a Python tutorial?

Section Schedule (+ Python)

Week 1: Probability review

Week 2: Python tutorial

Week 3: Linear algebra review

Week 6: Midterm review

Week 10: Final exam review

Section Schedule

Week 2: Probability review Week 3: Linear algebra review Week 6: Midterm review Week 10: Final exam review

Recap

- Parts of a machine learning algorithm
 - Data (input x and output y)
 - Hypothesis space (e.g. all boolean functions)
 - Objective (what makes one "incorrect" answer better/worse than another "incorrect" answer)
 - Algorithm (how do we get the least "incorrect" answer)

Recap

- Consider a simple, Boolean dataset:
 - $f: X \rightarrow Y$ $Y = \{0,1\}^4$

$$- X = \{0,1\}$$

$$- Y = \{0,1\}$$

- Question 1: How should we pick the *hypothesis space*, the set of possible functions *f* ?
- Question 2: How do we find the best f in the hypothesis space?

Dataset:

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

1

Recap: All Boolean Functions?

Consider all possible boolean functions over four input features! $x_1 x_2 x_3 x_4 | y$

- 2¹⁶ possible hypotheses
- 2⁹ are consistent with our dataset
- How do we choose the best one?

x_1	x_2	x_3	x_4	y
0	0	0	0	? ?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	?
1	0	0	0	?
1	0	0	1	1
1	0	1	0	1 ? ?
1	0	1	1	?
1	1	0	0	0
1	1	0	1	?
1	1	1	0	? ? ?
1	1	1	1	?

Dataset:

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Decision Trees

- Popular hypothesis class
- Very widely used in practice, from images to stock prices to everything in between
- With a few modifications (model ensambles) decision trees are one of the most successful models around, despite being 30+ years old
- Together with neural networks (which we will cover later in the course) they win the most Kaggle competitions...

Decision Trees

[tutorial on the board] [see lecture notes for details]

- How to make one decision: designing our first machine learning algorithm
- II. How to make multiple decisions
- III. Approximate fitting
- IV. Greedy vs exact fitting
- V. Define the hypothesis space