
Week 4: Näıve Bayes

Instructor: Sergey Levine

1 Näıve Bayes Models: Recap and Definitions

In this section, we’ll recap and formalize the discussion from last week. The
ideas are the same, but we’ll go into a little bit more depth. In the näıve Bayes
model, we have a dataset that consists of discrete labels y ∈ {0, . . . , Ly−1} and
attributes {x1, . . . , xK}, where each xk ∈ {0, . . . , Lk − 1}. We use x to denote
the vector (x1, . . . , xK)T . Note that y and x here are random variables. The
values of those random variables are referred to as xi and yi, where the dataset
is D = {(x1, y1), . . . , (xN , yN )}. We primarily discussed binary variables last
week, but the generalization to multinomials is straightforward. The objective
in näıve Bayes is the likelihood

L(θ) =

N∑
i=1

log p(xi, yi|θ) =

N∑
i=1

[
log p(yi|θ) +

K∑
k=1

log p(xik|yi, θ)

]
.

This is sometimes referred to as a generative objective, because it models how
the labels y give rise to (or generate) the attributes xk. For example, in the
case of the rain storm discussed last week, the probabilistic model assumes that
the storm gives rise to rain, lightening, and clouds. This is in contrast to a
discriminative objective of the form p(y|x), which does not aim to model how
the features or attributes are influenced by the label, but vice-versa.

In näıve Bayes, we typically use a disjoint subset of the parameters θ for
each probability table (sometimes referred to as a “factor”): we have one set
of parameters for the prior p(y), another set for p(x1|y = 0), another for
p(x1|y = 1), another for p(x2|y = 0), etc. We can write the set of parame-
ters as: θ = {θy, θx1,0, . . . , θx1,Ly , . . . , θxK ,0, . . . , θxK ,Ly}. Note that each entry
in this set might itself be one or more values. In the case where all variables are
binary, there is one parameter per probability table. But if we have multinomi-
als, then each e.g. θxk,0 might itself be a vector.

Indeed, the standard way to fit näıve Bayes models is to directly determine
the parameters of the multinomial distribution, which correspond to each entry
in each table p(xk = `|y = j). Let’s first check our understanding:

Question. How many probability tables are there, if we have K attributes
and Ly labels?
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Answer. We have one probability table for each attribute and each value of
the label, plus one more for the prior p(y), so the total is KLy + 1. The set
of tables for a single attribute (for all labels y) is sometimes referred to as a
conditional probability table (CPT), and we have K of those.

To fit each CPT, we can simply count the number of occurrences of each
pair (xk = `, y = j) in the dataset and normalize to make sure the distribution
adds up to 1 across all values of xk. So we have:

p(xk = `|y = j, θxk,j) =
Count(xk = ` and y = j)∑
`′ Count(xk = `′ and y = j)

.

Fitting the prior is even easier:

p(y = j|θy) =
Count(y = j)∑
j′ Count(y = j′)

.

Note that we can easily derive this update rule from the log-likelihood by noting
that each set of parameters affects only one probability table. First, let’s be
explicit about which part of the likelihood depends on which parameter:

L(θ) =

N∑
i=1

log p(xi, yi|θ) =

N∑
i=1

[
log p(yi|θy) +

K∑
k=1

log p(xik|yi, θxk,yi)

]
.

Now, let’s look at the gradient with respect to θxk′ ,j′ :

d

dθxk′ ,j′

N∑
i=1

[
log p(yi|θy) +

K∑
k=1

log p(xik|yi, θxk,yi)

]
=

N∑
i=1

 d

dθxk′ ,j′
log p(yi|θy)︸ ︷︷ ︸

always zero

+

K∑
k=1

d

dθxk′ ,j′
log p(xik|yi, θxk,yi)︸ ︷︷ ︸

zero if k 6= k′ or yi 6= j′

 =

N∑
i=1

1yi=j′
d

dθxk′ ,j′
log p(xik′ |j′, θxk′ ,j′).

From here, we can see that only records for which y = j′ matter, and among
those records, the only part of the log likelihood that matters is log p(xik′ |j′, θxk′ ,j′).
That means that we can fit each distribution completely separately, and still op-
timize the log likelihood.

2 Continuous Features

In practice, we might encounter problems where some attributes xk are discrete
and some are continuous. Note that in the näıve Bayes formulation, the CPT
for each xk can be parameterized differently. In general, we call it a conditional
probability distribution (CPD) in cases where it cannot be represented in a
simple tabular form. This could be any distribution type we want.
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Question. If we have an attribute xk ∈ R, what kind of distribution could we
use for p(xk|y)?

Answer. For real-valued attributes, a Gaussian distribution is often a good
choice. So we can set

p(xk|y = j) =
1

σk,j
√

2π
e
−

(xk−µk,j)
2

2σ2
k,j .

Note that the mean µk,j and variance σ2
k,j depends both on the index of the

attribute k and on the label j: for each label of y, we can have a different
mean and variance, just like we have different entries in the CPT for discrete
multinomial distributions.

To estimate the parameters µk,j and σ2
k,j , we simply consider the values of

xik for all records for which yi = j:

µk,j =
1

Count(y = j)

N∑
i=1

δ(yi = j)xik

σ2
k,j =

1

Count(y = j)

N∑
i=1

δ(yi = j)(xik − µk,j)
2,

where δ(. . . ) is the delta function, which is 1 if the argument is true, and 0
otherwise. Again, we can show that this is the optimal solution for µk,j and
σ2
k,j by differentiating the log likelihood and solving for the solution with a

derivative of zero. We can also impose a prior on the parameters as before.

3 Bayesian Networks Intro

Näıve Bayes is a special case of a type of model called a Bayesian network. We
will not cover Bayesian networks in detail in this course, but I will introduce the
idea briefly. Bayesian networks generalize the idea behind näıve Bayes to model
distributions over groups of variables with more complex conditional indepen-
dence relationship. A Bayesian network consists of a collection of CPDs, such
that the product of the CPDs is a full joint distribution over all the variables
that the Bayesian network models. Some of these may be labels and some may
be attributes: we don’t have to make the distinction during training, because
they are all treated the same way. We can visualize Bayesian networks graph-
ically by drawing a graph where each variable is a node, and a directed edge
indicates that the target node depends on the source node. So, for example, if
we have a graph over variables x1, x2, x3 with an edge from x1 to x3 and from
x2 to x3, that corresponds to the following factorization of the joint:

p(x1, x2, x3) = p(x3|x1, x2)p(x1)p(x2).
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Note that any node without an incoming edge simply gets a prior (e.g. p(x1)),
while nodes that have incoming edges are conditioned on all of the nodes from
which these edges originate. As with näıve Bayes, we can learn the parameters
of a Bayesian network independently for each CPD. For example, to fit p(x3 =
`|x1 = j, x2 = k), we can set:

p(x3 = `|x1 = j, x2 = k) =
Count(x3 = ` and x1 = j and x2 = k)

Count(x1 = j and x2 = k)
.

Things get a bit more complex when conditioning on continuous variables, and
there we typically have to employ parameterized distributions such as linear
Gaussians (like we did in linear regression).

Typically, once we learn the parameters of a Bayesian network, we might like
to perform inference at test time to infer the value of an unknown variable. For
example, we can draw a complex graph of a patient’s symptoms that describes
their actual independence structure and relationship. Then at test time, we can
measure some of the symptoms (but not others), and we can infer the rest by
choosing the values that maximize the probability of the final joint distribution.

Note, however, that unlike with näıve Bayes, inference in Bayesian networks
can become very difficult. For example, say we fit a Bayesian network to K vari-
ables x1, . . . , xK , and at test time M < K of these variables are unknown. Even
if each variable is binary, there are 2M possible assignments. In general, once
we have more than one unknown (like we did in näıve Bayes), the simple brute
force inference method becomes intractable. So a crucial ingredient for working
with large Bayesian networks is tractable and efficient inference algorithms.
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