Week 3: Naïve Bayes

Instructor: Sergey Levine

1 Generative modeling

In the classification setting, we have discrete labels $y \in \{0, \ldots, L_y - 1\}$ (let's assume for now that $L_y = 2$, so we are just doing binary classification), and attributes $\{x_1, \ldots, x_K\}$, where each x_k can take on one of L_k labels $x_k \in \{0, \ldots, L_k - 1\}$. In general, x_k could also be real-valued, and we'll discuss this later, but for now let's again assume that x_k is binary, so $L_k = 2$. We'll assume we have N records. For clarity of notation, superscripts will index records, and subscripts will index attributes, so y^i denotes the label of the i^{th} record, \mathbf{x}^i denotes all of the attributes of the i^{th} record, and x_k^i denotes the k^{th} attribute of the i^{th} record. Note that there is some abuse of notation here, since x_k is a random variable, while x_k^i is the value assigned to that random variable in the i^{th} record (in this case, an integer between 0 and $L_k - 1$).

If we would like to build a probabilistic model for classification, we could use the conditional likelihood, just like we did with linear regression, which is given by $p(y|\mathbf{x},\theta)$. In fact, this is what decision trees do, since the distribution over labels at each leaf can be treated as a probability distribution. However, the algorithm for constructing decision trees does not actually maximize $\sum_{i=1}^{N} \log p(y^i|\mathbf{x}^i,\theta)$, because optimally constructing decision trees is intractable. Instead, we use a greedy heuristic, which often works well in practice, but introduces complexity and requires some ad-hoc tricks, such as pruning, in order to work well.

If we wish to construct a probabilistic classification algorithm that actually optimizes a likelihood, we could use $p(\mathbf{x}, y|\theta)$ instead. The difference here is a bit subtle, but modeling such a likelihood is often simpler because we can decompose it into a conditional term and a prior:

$$p(\mathbf{x}, y|\theta) = p(\mathbf{x}|y, \theta)p(y|\theta).$$

Note that the prior now is $p(y|\theta)$: it's a prior on y (we could also have a prior on θ , more on that later). The prior is very easy to estimate: just count the number of times y = 0 in the data, count the number of times y = 1, and fit the binomial distribution just like we did last week. So that leaves $p(\mathbf{x}|y,\theta)$.

In general, learning $p(\mathbf{x}|y,\theta)$ might be very difficult. We usually can't just "count" the number of times each value of \mathbf{x} occurs in the dataset for y = 0, count the number of times each occurs for y = 1, and estimate the probabilities that way, because \mathbf{x} consists of K features, and even if each feature is only

binary, we have 2^K possible values of **x**: we'll never get a dataset big enough to see each value of **x** even once as K gets large! So we'll use an approximation.

2 Naïve Bayes

The approximation consists of exploiting conditional independence. First, let's try to understand conditional independence with a simple example. Let's say that we are trying determine whether there is a rain storm outside, so our label y is 1 if there is a storm, and 0 otherwise. We have two features: rain and lightening, both of which are binary, so $\mathbf{x} = \{1_{\text{rain}}, 1_{\text{lightening}}\}$. If want to model the full joint distribution $p(\mathbf{x}, y)$, we need to represent all 8 possible outcomes (2^3) . If we want to model $p(\mathbf{x})$, we need to represent all 4 possible outcomes (2^2) . However, if we just want to represent the conditional $p(\mathbf{x}|y)$, we observe an interesting independence property: if we already know that there is a storm, then rain and lightening are independent of one another. Put another way, if we know there is a storm, and someone tells us that it's raining, that does not tell us anything about the probability of lightening. But if we don't know whether there is a storm or not, then knowing that there is rain makes the probability of lightening higher. Mathematically, this means that:

$$p(\mathbf{x}) = p(x_1, x_2) \neq p(x_1)p(x_2)$$
 and $p(x_1, x_2|y) = p(x_1|y)p(x_2|y)$

We say in this case that rain is *conditionally independent* of lightening – they are independent, but only when conditioned on y. Note that as the number of features increases, the total number of parameters in the full joint $p(\mathbf{x}|y)$ increases exponentially, since there are exponentially many values of \mathbf{x} . However, the number of parameters in the conditionally independent distribution $\prod_{k=1}^{K} p(x_k|y)$ increases linearly: if the features are binary, each new feature adds just two parameters: the probability of the feature being 1 when y = 0 and its probability of being 1 when y = 1.

The main idea behind naïve Bayes is to exploit the efficiency of the conditional independence assumption. In naïve Bayes, we assume that *all* of the features are conditionally independent. This allows us to efficiently estimate $p(\mathbf{x}|y)$.

Question. What is the data?

Answer. The data is defined as $\mathcal{D} = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}$, where y is categorical, and **x** is a vector of features which may be binary, multivariate, or, as we will see later, continuous.

Question. What is the hypothesis space?

Answer. The hypothesis space is the space of all distributions that factorize according to

$$p(y)\prod_{k=1}^{K}p(x_k|y).$$

If we assume (for now) that y and each x_k are binary, then we have 2K + 1 different binomial distributions that we need to estimate. Since each of these distributions has one parameter, we have $\theta \in [0, 1]^{2K+1}$.

Question. What is the objective?

Answer. The MLE objective for naïve Bayes is

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \log p(\mathbf{x}^{i}, y^{i} | \theta).$$

Later, we'll also see that we can formulate a Bayesian objective of the form $\log p(\theta|\mathcal{D})$.

Question. What is the algorithm?

Answer. In order to optimize the objective, we simply need to estimate each of the distributions $p(x_k|y)$ and the prior p(y). Each of these can be treated as a separate MLE problem. To estimate the prior p(y), we simply estimate

$$p(y=j) = \frac{\operatorname{Count}(y=j)}{\sum_{j'} \operatorname{Count}(y=j')},$$

where $\sum_{j'}^{L_y} \text{Count}(y = j') = N$,¹ the size of the dataset. For each feature x_k , if x_k is multinomial (or binomial), we estimate

$$p(x_k = \ell | y = j) = \frac{\operatorname{Count}(x_k = \ell \text{ and } y = j)}{\sum_{\ell'} \operatorname{Count}(x_k = \ell' \text{ and } y = j)},$$

where $\sum_{\ell'} \text{Count}(x_k = \ell' \text{ and } y = j) = \text{Count}(y = j)$, the number of records for which y = j. It's easy to check that this estimate of the parameters maximizes the likelihood, and this is left as an exercise.

Now, a natural question to ask is: when we observe a new record with features \mathbf{x}^* , how do we predict the corresponding label y^* ? This is referred to as the *inference* problem: given our model of $p(\mathbf{x}, y)$, we have to determine the y^* that makes the observed \mathbf{x}^* most probable. That is, we have to find

$$y^{\star} = \arg\max_{y} p(\mathbf{x}^{\star}, y)$$

Fortunately, the number of labels y is quite small, so we can simply evaluate the probability of each label j. So, given a set of features \mathbf{x}^* , we simply test $p(\mathbf{x}^*, y = j)$ for all j, and take the label j that gives the highest probability.

¹We can express this more formally in set notation: $\operatorname{Count}(y=j) = |\{y^i \in \mathcal{D} | y^i = j\}|.$