
Week 3: Näıve Bayes

Instructor: Sergey Levine

1 Generative modeling

In the classification setting, we have discrete labels y ∈ {0, . . . , Ly − 1} (let’s
assume for now that Ly = 2, so we are just doing binary classification), and
attributes {x1, . . . , xK}, where each xk can take on one of Lk labels xk ∈
{0, . . . , Lk − 1}. In general, xk could also be real-valued, and we’ll discuss
this later, but for now let’s again assume that xk is binary, so Lk = 2. We’ll as-
sume we have N records. For clarity of notation, superscripts will index records,
and subscripts will index attributes, so yi denotes the label of the ith record, xi

denotes all of the attributes of the ith record, and xik denotes the kth attribute
of the ith record. Note that there is some abuse of notation here, since xk is a
random variable, while xik is the value assigned to that random variable in the
ith record (in this case, an integer between 0 and Lk − 1).

If we would like to build a probabilistic model for classification, we could
use the conditional likelihood, just like we did with linear regression, which is
given by p(y|x, θ). In fact, this is what decision trees do, since the distribution
over labels at each leaf can be treated as a probability distribution. How-
ever, the algorithm for constructing decision trees does not actually maximize∑N

i=1 log p(yi|xi, θ), because optimally constructing decision trees is intractable.
Instead, we use a greedy heuristic, which often works well in practice, but in-
troduces complexity and requires some ad-hoc tricks, such as pruning, in order
to work well.

If we wish to construct a probabilistic classification algorithm that actually
optimizes a likelihood, we could use p(x, y|θ) instead. The difference here is
a bit subtle, but modeling such a likelihood is often simpler because we can
decompose it into a conditional term and a prior:

p(x, y|θ) = p(x|y, θ)p(y|θ).

Note that the prior now is p(y|θ): it’s a prior on y (we could also have a prior
on θ, more on that later). The prior is very easy to estimate: just count the
number of times y = 0 in the data, count the number of times y = 1, and fit
the binomial distribution just like we did last week. So that leaves p(x|y, θ).

In general, learning p(x|y, θ) might be very difficult. We usually can’t just
“count” the number of times each value of x occurs in the dataset for y = 0,
count the number of times each occurs for y = 1, and estimate the probabilities
that way, because x consists of K features, and even if each feature is only

1

binary, we have 2K possible values of x: we’ll never get a dataset big enough to
see each value of x even once as K gets large! So we’ll use an approximation.

2 Näıve Bayes

The approximation consists of exploiting conditional independence. First, let’s
try to understand conditional independence with a simple example. Let’s say
that we are trying determine whether there is a rain storm outside, so our label
y is 1 if there is a storm, and 0 otherwise. We have two features: rain and
lightening, both of which are binary, so x = {1rain, 1lightening}. If want to model
the full joint distribution p(x, y), we need to represent all 8 possible outcomes
(23). If we want to model p(x), we need to represent all 4 possible outcomes
(22). However, if we just want to represent the conditional p(x|y), we observe
an interesting independence property: if we already know that there is a storm,
then rain and lightening are independent of one another. Put another way, if we
know there is a storm, and someone tells us that it’s raining, that does not tell
us anything about the probability of lightening. But if we don’t know whether
there is a storm or not, then knowing that there is rain makes the probability
of lightening higher. Mathematically, this means that:

p(x) = p(x1, x2) 6= p(x1)p(x2) and p(x1, x2|y) = p(x1|y)p(x2|y)

We say in this case that rain is conditionally independent of lightening – they
are independent, but only when conditioned on y. Note that as the number
of features increases, the total number of parameters in the full joint p(x|y)
increases exponentially, since there are exponentially many values of x. How-
ever, the number of parameters in the conditionally independent distribution∏K

k=1 p(xk|y) increases linearly: if the features are binary, each new feature
adds just two parameters: the probability of the feature being 1 when y = 0
and its probability of being 1 when y = 1.

The main idea behind näıve Bayes is to exploit the efficiency of the con-
ditional independence assumption. In näıve Bayes, we assume that all of the
features are conditionally independent. This allows us to efficiently estimate
p(x|y).

Question. What is the data?

Answer. The data is defined as D = {(x1, y1), . . . , (xN , yN)}, where y is
categorical, and x is a vector of features which may be binary, multivariate, or,
as we will see later, continuous.

Question. What is the hypothesis space?

2

Answer. The hypothesis space is the space of all distributions that factorize
according to

p(y)

K∏
k=1

p(xk|y).

If we assume (for now) that y and each xk are binary, then we have 2K + 1
different binomial distributions that we need to estimate. Since each of these
distributions has one parameter, we have θ ∈ [0, 1]2K+1.

Question. What is the objective?

Answer. The MLE objective for näıve Bayes is

L(θ) =

N∑
i=1

log p(xi, yi|θ).

Later, we’ll also see that we can formulate a Bayesian objective of the form
log p(θ|D).

Question. What is the algorithm?

Answer. In order to optimize the objective, we simply need to estimate each
of the distributions p(xk|y) and the prior p(y). Each of these can be treated as
a separate MLE problem. To estimate the prior p(y), we simply estimate

p(y = j) =
Count(y = j)∑
j′ Count(y = j′)

,

where
∑Ly

j′ Count(y = j′) = N ,1 the size of the dataset. For each feature xk, if
xk is multinomial (or binomial), we estimate

p(xk = `|y = j) =
Count(xk = ` and y = j)∑
`′ Count(xk = `′ and y = j)

,

where
∑

`′ Count(xk = `′ and y = j) = Count(y = j), the number of records for
which y = j. It’s easy to check that this estimate of the parameters maximizes
the likelihood, and this is left as an exercise.

Now, a natural question to ask is: when we observe a new record with
features x?, how do we predict the corresponding label y?? This is referred to
as the inference problem: given our model of p(x, y), we have to determine the
y? that makes the observed x? most probable. That is, we have to find

y? = arg max
y

p(x?, y)

Fortunately, the number of labels y is quite small, so we can simply evaluate
the probability of each label j. So, given a set of features x?, we simply test
p(x?, y = j) for all j, and take the label j that gives the highest probability.

1We can express this more formally in set notation: Count(y = j) = |{yi ∈ D|yi = j}|.

3

	Generative modeling
	Naïve Bayes

