
Week 3: Linear Regression

Instructor: Sergey Levine

1 The regression problem

We saw how we can estimate the parameters of probability distributions over
a random variable x. However, in a supervised learning setting, we might be
interested in predicting the value of some output variable y. For example, we
might like to predict the salaries that CSE 446 students will receive when they
graduate. In order to make an accurate prediction, we need some information
about the students: we need some set of features. For example, we could try to
predict the salaries that students will receive based on the grades they got on
each homework assignment. Perhaps some assignments are more important to
complete than others, or more accurately reflect the kinds of skills that employ-
ers look for. This kind of problem can be framed as regression.

Question. What is the data?

Answer. Like with decision trees, the data consists of tuples (xi, yi). Except
now, y ∈ R is continuous, as are all of the attributes (features) in the vector x.
The dataset is given by D = {(x1, y1), . . . , (xN , yN )}.

Question. What is the hypothesis space?

Answer. This is a design choice. A simple and often very powerful hypothesis
space consists of linear functions on the feature vector xi, given by f(xi) =∑d

j=1 wjxi,j = xi·w. The parameters of this hypothesis are the weights w ∈ Rd.

Question. What is the objective?

Answer. This is also a design choice. Intuitively, we would like f(xi) to be
“close” to yi, so we can write our objective as:

ŵ← arg min
w

N∑
i=1

D(f(xi), yi),

where D(a, b) is some measure of distance. Which distance measure to use?
Well, a popular choice is to simply use the `2 norm (squared error), given by

1



D(f(xi), yi) = (f(xi)− yi)2. This gives us the following objective:

ŵ← arg min
w

N∑
i=1

(f(xi)− yi)2,

Given our definition of f(xi), this is simply

ŵ← arg min
w

N∑
i=1

(xi ·w − yi)2,

As we will see later in the lecture, this choice of distance function corresponds
to a kind of probabilistic model, which turns regression into a MLE problem.

Question. What is the algorithm?

Answer. Just like in the MLE lectures, we can derive the optimal ŵ by taking
the derivative of the objective and setting it to zero. Note that we take the
derivative with respect to a vector quantity w (this is also called the gradient):

d

dw

N∑
i=1

(xi ·w − yi)2 =

N∑
i=1

xi(xi ·w − yi) = 0.

So the gradient consists of the sum over all datapoints of the (signed) error (also
called the residual), times the feature vector of that datapoint xi. To make it
convenient to derive the solution w, we can rearrange this in matrix notation,
by defining

X =


xT
1

xT
2

. . .
xT
N

 Y =


y1
y2
. . .
yN


Then we can see that the summation in the gradient equation above can be
equivalently expressed as a matrix product:

N∑
i=1

xi(xi · ŵ − yi) = XT (Xŵ −Y) = XTXŵ −XTY = 0

Now we can rearrange terms and solve for w with a bit of linear algebra:

XTXŵ = XTY ⇒ ŵ = (XTX)−1XTY.

This gives us the optimal estimate ŵ that minimizes the sum of squared errors.

2



2 Features

In machine learning, it is often useful for us to make a distinction between fea-
tures and inputs. This is particularly true in the case of linear regression: since
the function we are learning is linear, choosing the right features is important
to get the necessary flexibility. For example, imagine that we want to predict
salaries y for students in CSE 446. All we have is their grades on the home-
works, arranged into a 4D vector x. If we learn a linear function of x, we will
probably see that the higher the scores get, the higher the salaries. But what
if in reality, there are diminishing returns: students who get bad scores get low
salaries, but higher salaries don’t result in a proportional increase, since these
scores are already “good enough” – the resulting function might look a little
bit like a quadratic. So perhaps in this case, it would be really nice if we had
some quadratic features. We can do this by defining a feature function h(xi).
For example, if we want quadratic features, we might define:

h(xi) =



xi,1

x2
i,1

xi,2

x2
i,2

xi,3

x2
i,3

xi,4

x2
i,4


Let hi = f(xi), then we can write the linear regression problem in terms of the
features hi as

ŵ← arg min
w

N∑
i=1

(hi ·w − yi)2

We can then solve for the optimal ŵ exactly the same way as before, only using
H instead of X:

ŵ = (HTH)−1HTY

So we can see that in this way, we can use the same exact least squares objective
and the same algorithm to fit a quadratic instead of a linear function. In general,
we can fit any function that can be expressed as a linear combination of features.

Question. In the case of standard linear regression, expressed as f(xi) =
w · xi, what is the data, hypothesis space, objective, and algorithm? What is
the data, hypothesis space, objective, and algorithm in the case where we have
f(xi) = w · h(xi), where h(. . . ) extracts linear and quadratic features?

Answer. The data, objective, and algorithm are the same in both cases. The
only thing that changes is the hypothesis space: in the former case, we have
the class of all lines, and in the latter case, we have the class of all (diagonal)
quadratic functions.

3



In fact, we can choose any class of features h(xi) we want to learn complex
functions of the input. A few choices are very standard for linear regression
and are used almost always. For example, we often want to include a constant
feature, e.g.

h(xi) =


xi,1

. . .
xi,d

1


so that the linear regression weights w include a constant bias (which is simply
the coefficient on the last, constant feature).

3 Linear regression as MLE

At this point, we might wonder why we actually use the sum of squared errors
as our objective. The choice seems reasonable, but a bit arbitrary. In fact,
linear regression can be viewed as (conditional) maximum likelihood estimation
under a particular simple probabilistic model. Unlike in the MLE examples
covered last week, now our dataset D includes both inputs and outputs, since
D = {(x1, y1), (x2, y2), . . . , (xN , yN )}. So we will aim to construct a conditional
likelihood of the form p(y|x, θ).

Question. What kind of likelihood can we construct such that log p(y|x, θ)
corresponds to squared error?

Answer. We saw last week that for continuous variables (such as y), a good
choice of distribution is the Gaussian distribution. Note that the logarithm of
a Gaussian distribution is quadratic in the variable y:

log p(y|µ, σ) = − log σ − 1

2σ2
(µ− y)2 + const.

That looks a lot like the squared error objective in linear regression – we just
need to figure out how to design σ and µ. If we simply set µ = f(x), we get:

log p(y|x,w, σ) = − log σ − 1

2σ2
(x ·w − y)2 + const.

So the (conditional) log-likelihood of our entire dataset is given by

L(w, σ) = −N log σ − 1

2σ2

N∑
i=1

(xi ·w − yi)2 + const.

If we set the derivative with respect to w to zero, we get

− 1

2σ2

N∑
i=1

xi(xi ·w − yi) = 0⇒
N∑
i=1

xi(xi ·w − yi) = 0,

4



which is exactly the same equation as what we saw for the sum of squared errors
objective. Therefore, the solution under this model is given, as before, by

ŵ = (XTX)−1XTY,

and we can estimate the variance σ2 by plugging in the optimal mean:

σ2 =
1

N

N∑
i=1

(xi · ŵ − y)2.

However, σ2 won’t affect the maximum likelihood prediction of y, which will
always be xi · ŵ, the most probable value according to the Gaussian model, so
we often disregard σ2 when performing linear regression.

What is the practical, intuitive interpretation of this probabilistic model?
This model states that the data comes from some underlying Gaussian distri-
bution y ∼ N (x · w, σ2), so the samples we observe are noisy realizations of
the underlying function x · w. Therefore, any deviation from this function is
modeled as symmetric Gaussian noise.

5


	The regression problem
	Features
	Linear regression as MLE
	Linear regression and overfitting

