Week 5: Neural Networks

Instructor: Sergey Levine

1 Backpropagation Base Case Summary

First, let’s quickly summarize how a neural network works. The equation from
last time that describes how we compute activations is given by:

ho — J(Vv(f)h(@*l) + b(f)).

We have L layers, and by convention h(®) = x. In the binary classification case,
we have p(y = 1|x) = h(F), and p(y = 0|x) = 1 — hD). If L = 1, we simply
recover logistic regression. Each layer has a matrix W) and bias vector b(®).
The size of each hidden activation vector h(9 is My, and My is the number of
attributes and My, = 1 for binary classification. Each matrix W) is M, x M,_1,
and each bias vector b(®) has size M,. For convenience, we also introduce

L0 — WORE-1) | p®

such that
ho — O'(Z(é)> _ U(w(é)h(f—l) + b(ﬁ)).

In order to optimize the conditional log-likelihood with respect to the param-
eters 0 = {W(1)7b(1), . 7W(L),b(L)}7 we use gradient ascent, which requires
computing the gradient with respect to each of the parameters. In the last lec-
ture, we saw how to do this in the “base case” where we want the derivatives
with respect to the last layer weights W(X) and b(%). This derivation was for
the (simple) case where we only have one datapoint, so N = 1. We'll see what
happens when N > 1 today, and extend this to the recursive case to compute
the gradient with respect to all datapoints.

If we have one datapoint, we have

1_q. (D)
L)y yt =0:log(l —hl™)
L) { yl =1: log(h(L))
so we can differentiate with respect to the log likelihood according to

e _{y1:0:1_hl(L)

dh @D~y =1k

dc

-5y, according to:

We then apply the chain rule to get

L de dh® L

— _ L o (L)
720 = ahD g = gy °)0 (= o),

where o denotes an elementwise product, since ¢ is applied to each element of
(L)

2(F) independently, and therefore z;"’ only affects h§L) ifi=j.
Once we have %, we can again apply chain rule to get derivatives with

respect to W) and b, by using the fact that
20 = WE)p(L=1) 4 p(L),

For the bias, we have:

dc i dc d=tP ac

b~ = 4P P g

j=1
And for the weights matrix, we have:

L _J‘i de_dz" _ dL e

L) L L) L J
aw S aw @

This is all for the case where there is exactly one datapoint, and therefore #ﬁ)
has one column. If we have multiple datapoints (so N > 1), we’ll simply treat
the datapoints as one huge matrix, just like we did in linear regression. So x
will be My x N, and h¥) will be M; x N. The log-likelihood can then be written
as

N i_q.- (L)

L(hF) = Z yi B 0 IOg(l(L)hu)
i=1 Yy = 1: IOg(h‘l,i)

We can therefore fill the 1 x N matrix % according to:
dc y=0: o
P

Now, we can actually repeat the entire derivation above for the matrix case,
using matrix multiplication instead of vector multiplication, and all of the math
is exactly the same, except that we have to sum over the datapoints when we
compute the gradients of the parameters, so we get:

ac _ZN: c
abl” =
and
N

dc AL (1)
= h . 1 .
w2

32

If we write this in matrix notation, we simply get

ac - dL p
db(L) — g (L) "N
dc dc (D)

AW — dz(D)

where 1 is simply a vector of length N where each entry is 1.

2 Backpropagation Recursive Case

How can we get the derivatives with respect to the weights in the preceding
layers? Well, we note that the previous layers only affect £ via (=1 so we
simply need to know dh(dfﬁ,l). Since we know that

2L = W) p(L=1) 4 p(L)

and therefore

My 1
(L) _ (L) (L=1) | (L)
A =" WHRETY)
j=1
we can derive
ac Z% e dz" :% AL :%((W(U)T) dc
an"" H P anY Hae Y o gvi dz M)

in matrix notation, this simply becomes

L dLr
_ (L\T
g = WD

In the case where we have more than one datapoint, the same exact derivation

can be repeated for each column of % (recall that there are N columns),
and the math is exactly the same in matrix notation. Now that we have dh(dT{l),
we simply apply the equations in the previous section to get the gradients with
respect to WD and b(Z=1 | and then repeat and compute the derivative with

respect to h(L=2),

3 Algorithm Summary

The full backpropagation algorithm is shown below. We assume that each h(*)
and 2z is arranged into a M, by N matrix.

Algorithm 1 Backpropagation
1: £+ L
2: compute m by differentiating the log-likelihood
3: while ¢ > () do

4: d%’) — dh(L) ° U(Z(é))(l - J(z(é)))
S e diﬁ)

6 gwam ¢ gam (hT)T

T #ﬁl} A (W(Z))Tdi(cé)

8: {+0—1

9: end while

Note that we only ever need to keep track of one partial derivative with
respect to either post-synaptic or pre-synaptic activations, so in practice it is
often convenient to denote this quantity as §, which is sometimes referred to as
the error, diff, or backward signal. Then, the algorithm looks like this:

Algorithm 2 Backpropagation
1: £+ L
ac
2: (S “— m
3: while £ > 0 do

4§ do00(29)(1—0a(z?))

ac
b 0

5

6: o « §(hD)T
7 O — (W(z))T(S

8 L+ L—1

9: end while

4 Comparison with Logistic Regression

We discussed on Monday how logistic regression compares with naive Bayes, and
saw how naive Bayes introduces additional assumptions (feature independence)
to reduce overfitting at the expense of introducing bias. So logistic regression
has less bias (meaning lower training error, it fits the data better), but because
it is more expressive (meaning it can capture more interesting and complex
functions), it can overfit more when the dataset is small or the input is too
high-dimensional. Neural networks are even more extreme in this regard: neural
networks can represent many more functions that logistic regression, especially
if we use many layers and many hidden units. This means they have less bias,
which means they can fit really complicated functions better. However, they
are more vulnerable to overfitting, and therefore work best when data is very
plentiful.

5 Stochastic Gradient Ascent (or Descent)

Since neural networks work best when there is a lot of data, the computational
cost of gradient ascent can be quite high, since we have to keep track of matrices
with N columns. Each iteration takes O(N) time, and we might need many
iterations. There is a simple trick we can use to substantially accelerate gradient
ascent on the neural network log-likelihood (or gradient descent on the negative
log-likelihood) called “stochastic gradient descent” (SGD). In these notes, I'll
actually describe “stochastic gradient ascent,” but it’s typically called SGD in
practice, and performs descent on the negative log-likelihood. The math is
exactly the same in both cases, it’s just a matter of whether or not you put the
negative sign on £ (and then go in the direction of the negative gradient) or
leave the negative sign off and go in the direction of the positive gradient.

The idea in SGD is to sample a small batch from your training data at each
iteration. You can think of this as choosing a different tiny “training set” each
time. There is a formal reason why this is still guaranteed to converge to a
local optimum, but the intuition is that our training set gives us a sample-based
estimate of the gradient of the “true” likelihood (which, as you recall, requires
integrating over all possible datapoints in existence). So if the training set is
a big sample-based estimate, using a smaller sample-based estimate is just as
“correct,” but since we have fewer samples, the estimate of the “true” gradient
is more noisy. But much faster. So SGD works like this:

Algorithm 3 SGD

1: Initialize #%) (e.g. randomly)

2: while not converged do

3. Sample a batch D) from the dataset D by randomly picking B points
4: Compute VLp (A1) using the datapoints in the batch D)
5

6

00+ « 90 1 oV Ly ()
: end while

We typically need to use a lower learning rate « if we use smaller batches
with smaller values of B, because our gradient is less exact with fewer samples.
Reasonable values of B tend to vary, but something on the order of 50 to 100 is
reasonable. There are also many tricks and modifications to the SGD algorithm
that people employ to improve convergence and stability, most of which are
centered around cleverly setting «. This tends to be a bit difficult, especially
for very large networks, and you may need to try a few « settings to get a good
answer. Often, if the algorithm seems to convergence, decreasing « a bit will
improve the training likelihood further.

6 Non-Binary Outputs

We can handle non-binary categorical outputs y € {1,..., Ly} in the same way
as we did for logistic regression, by using

exp (ZEL{I WpED o b§-L))

(2

L, Mg - '
Zj/zl exp (Zi:Ll Wg'Lz z(‘L Y b§L)>

p(y = jlx,0) =

We can write this as .
ply = jlx.0) = n'",

where the last layer has a different nonlinearity. So instead of h(X) = g(2(1)),
we use h(") = softmax(z(%)), where softmax(z) is given by

exp(21)/ M exp(z;)
exp(z2)/ 32,24 exp(z;)
exp(znr,)/ Y104 exp(z))

which we can write more concisely as following (assuming exp is applied ele-
mentwise):

softmax(z) =

My,
softmax(z) = exp(z)/ Zexp(zj).
j=1

Note that all previous layers still use ¢ as the nonlinearity, so if the network
has, for example, 3 hidden layers, we can unroll it as:

h®) = softmax(W® (WP g(WL RO L b1y L p@)) 4 b)),

We can compute gradients in this network exactly the same as we did before,
except that the gradient of the softmax function is a little different. Deriving
this gradient is left as an exercise.

We can also handle real-valued outputs. This requires us a different model
for the log-likelihood. A convenient model is the same one we used in linear
regression, where p(y|x,0) ~ N (h(F),v?) (I used v* here for the variance, since
we're already using o for the nonlinearity function). As in linear regression, we
assume v2 is some constant, since the optimal solution will still be the same.

The conditional log-likelihood is
N

1 - L
£00) = =5 > =)
i=1
So we want each entry in A(X) to be in R. That means that again we have to
change the output nonlinearity. This time, instead of using o or softmax, we
simply use nothing at all. So we get

h3) — W(3)U(W(2)U(W(1)h(0) + b(l)) + b(2)) +b®),

In the same way that a neural network for classification is a generalization of
logistic regression with additional hidden layers, neural networks for regression
are a generalization of linear regression with additional hidden layers.

Finally, just like in logistic regression, we can switch from MLE to MAP by
putting a prior on the weights. The quadratic penalty is the most popular prior,
and corresponds simply to adding the following terms to the objective:

N
L(0) =D logp(y'[x',0) =A)_ Z(ng})?

Note that the bias terms are typically not regularized, and A is sometimes called
the “weight decay” because it encourages the weights to take on smaller values.

	Backpropagation Base Case Summary
	Backpropagation Recursive Case
	Algorithm Summary
	Comparison with Logistic Regression
	Stochastic Gradient Ascent (or Descent)
	Non-Binary Outputs

