
Week 5: Neural Networks

Instructor: Sergey Levine

1 Neural Networks Summary

In the previous lecture, we saw how we can construct neural networks by ex-
tending logistic regression. Neural networks consist of multiple layers of com-
putation. At each layer, we have a vector values called activations, which we’ll
denote h(`) for the activations at layer `. By convention, we’ll say that h(0) = x
(the input) and for the last layer L, we have h(L) be the output, which could
be the probability of a label (we’ll discuss regression and other types of outputs
later). We can express the activations in the neural net recursively as

h(`) = σ(W(`)h(`−1) + b(`)),

where σ(z) is a nonlinearity. Last lecture, we saw a common choice of nonlin-
earity, the sigmoid (or logistic function):

σ(z) =
1

1 + exp(−z)
.

In a neural network, we must choose the number of layers L and the size of each
layer (the size of h(0) is the number of input attributes and the size of h(L) is
the number of outputs – more on that later). If we have a network with three
layers of weights (corresponding to two hidden layers), we can explicitly write
it as:

h(3) = σ(W(3)σ(W(2)σ(W(1)h(0) + b(1)) + b(2)) + b(3)).

Note that there is a little bit of confusion in terminology: this network has
three “layers” of weights, given by W(1), W(2), and W(3), but two “layers”
of hidden activations h(1) and h(2), since h(0) is simply x (and therefore not
“hidden”), and h(3) is the output. Traditionally, “hidden layer” in a neural
network refers to a layer of hidden activations (or “neurons”), but more recent
terminology typically refers to the weights as layers. They are off by one, so
don’t get confused!

Now, let’s check our understanding:

Question. What is the data?

1



Answer. Just like in logistic regression, we have an input vector x, which can
be either continuous real-valued, binary, or categorical. Just like with logistic
regression, categorical values are often converted into “one-hot” encodings: if
some feature takes on M values, we might add M entries to x, where all but
one is zero. This avoids the need to impose an ordering on that variable. The
output y for now is categorical (just like in logistic regression), though we’ll
discuss how we can have real-valued y as well later.

Question. What defines (parameterizes) the hypothesis?

Answer. To define a neural network, we have to first choose the number and
size of the layers. This is a design decision (so technically, number and size
of layers are hyperparameters). We choose these the same way we choose the
features h(x) to use for logistic regression, the amount of regularization, etc: we
use our intuition and, when in doubt, validate against the validation set. Once
we’ve figured out the number of layers and their size, the neural network is fully
defined by the weights θ = {W(1),b(1), . . . ,W(L),b(L)}. It is precisely these
weights that our learning algorithm needs to optimize.

Question. What is the objective?

Answer. Neural networks are conditional (or “discriminative”) models. Just
like logistic regression and linear regression, neural networks optimize the con-
ditional log-likelihood, given by

L(θ) =

N∑
i=1

log p(yi|xi, θ)

In the case of a binary label y and a three-layer network (two hidden layers),
this is given by

L(θ) =

N∑
i=1

{
if yi = 0 : 1− σ(W(3)σ(W(2)σ(W(1)xi + b(1)) + b(2)) + b(3))
if yi = 1 : σ(W(3)σ(W(2)σ(W(1)xi + b(1)) + b(2)) + b(3))

Question. What is the algorithm?

Answer. Just like with logistic regression, we’ll use gradient ascent to opti-
mize the neural network parameters θ. However, we have many more parameters
now, and computing the gradient becomes a lot more difficult. Furthermore, un-
like with logistic regression, the neural network objective is not convex, because
the weights W(`) and b(`) have complex nonlinear effects on the output. That
means that gradient ascent can get stuck in local optima when optimizing neu-
ral networks, and we cannot in general guarantee a globally optimal solution.
In practice, especially for smaller networks, it’s often not hard to find “good

2



enough” solutions with gradient ascent that are not globally optimal but still
perform well. For very large and deep networks, we often have to think about
more sophisticated optimization algorithms (more on this later). To summa-
rize, the gradient ascent algorithm simply consists of repeatedly applying the
following operation:

θ(j+1) ← θ(j) + α∇L(θ(j)).

Note that ∇L(θ(j)) here is a huge vector that consists of the concatenation of
the gradient with respect to each weight matrix and bias vector. Assume that
each weight matrix W(`) has M` rows and M`−1 columns, then ∇L(θ) can be
written as:

∇L(θ) =



dL
dW

(1)
1,1

dL
dW

(1)
2,1

. . .
dL

dW
(1)
M1,1

dL
dW

(1)
1,2

. . .
dL

dW
(1)
M1,2

. . .
dL

dW
(1)
M1,M0

dL
db

(1)
1

. . .
dL

db
(1)
M1
dL

dW
(2)
1,1

. . .
dL

dW
(2)
M2,1

. . .
dL

dW
(2)
M2,M1

dL
db

(2)
1

. . .
dL

db
(2)
M2

. . .
dL

dW
(L)
ML,ML−1

. . .
dL

db
(L)
ML


In practice, it can often be more convenient when implementing gradient ascent
for neural networks to simply compute the gradient with respect to each matrix
W(`) and vector b(`) and increment them individually according to the gradient

3



ascent rule (which has exactly the same effect). For example, in an object-
oriented framework, each matrix and vector can be its own object that “knows”
how to compute its own gradient and apply gradient ascent, or else concatenate
its gradient to the huge full gradient vector. In the next section, we’ll discuss
how we can compute the gradient with respect to each weight matrix W(`).

2 Backpropagation: base case

To evaluate the output of a neural network, we recursively evaluate each layer
as following:

h(`) = σ(W(`)h(`−1) + b(`)).

We will also introduce z(`) = W(`)h(`−1) +b(`), such that h(`) = σ(z(`)). Some-
times, you’ll see h referred to as “post-synaptic” and z as “pre-synaptic.”

This recursive evaluation of a neural network is referred to as “forward propa-
gation,” because we are “propagating” the activations from the input “forward”
to the output. To compute derivatives, we use the chain rule to differentiate
each layer of the neural network with respect to the objective. This algorithm
proceeds from the end of the neural network back down to the first layer, and
is therefore referred to as “backward propagation” or “backpropagation.”

First, let’s revisit the chain rule. If we have the composition of two functions
f(g(x)), and we want df

dx , we can evaluate it as:

df

dx
=
df

dg

dg

dx
.

For example, if f(y) = ay, and g(x) = bx, then df
dx = ab. The same idea applies

in the multivariate case. Let’s say that we have a vector x, and f(y) = Ay,
and g(x) = Bx. Then

df

dx
=
df

dg

dg

dx
= AB⇒

(
df

dx

)
i,j

=
∑
k

Ai,kBk,j .

Next, let’s see how we can compute the gradient for a single-layer neural
network, which simply corresponds to logistic regression. Although the output of
this network is 1D in the binary case, we’ll still do the math for the multivariate
case, assuming there are M1 outputs (it just happens that M1 = 1). This will
make things more convenient later. The likelihood is given by

L(θ) =

N∑
i=1

log p(yi|xi,W(1),b(1)).

In the binary case, we simply have log p(y|x,W(1),b(1)) = log(h(1)) if y = 1 and
log p(y|x,W(1),b(1)) = log(1−h(1)) otherwise. If we assume for now that there
is only one datapoint (we’ll see what happens with multiple datapoints later),
we just have

dL
dh(1)

=

{
y1 = 0 : −1

1−h(1)

y1 = 1 : 1
h(1)

4



We know that L(h(1)) = L(σ(z(1))) = L(σ(W(1)x + b(1))), and therefore we
can use the chain rule to get

dL
dz(1)

=
dL
dh(1)

dh(1)

dz(1)

We already know that dL
dh(1) is simply 1 or −1. We know that

h
(1)
i = σ(z

(1)
i ) =

1

1 + exp(−z(1)i )
,

and therefore

dL
dz

(1)
i

=
dL
dh

(1)
i

d

dz
(1)
i

1

1 + exp(−z(1)i )
=

dL
dh

(1)
i

exp(−z(1)i )

(1 + exp(−z(1)i ))2
=

dL
dh

(1)
i

σ(z
(1)
i )(1−σ(z

(1)
i ))

To see why this is true, note that

(1− σ(z)) =
1 + exp(−z)− 1

1 + exp(−z)
=

exp(−z)
1 + exp(−z)

.

Note that dL
dh

(1)
i

dh
(1)
i

dz
(1)
j

= 0 if i 6= j, so we only need to pointwise multiply each

entry in dL
dh

(1)
i

by σ(z
(1)
i )(1− σ(z

(1)
i )). Now we just need to evaluate

dL
dW(1)

=
dL
dz(1)

dz(1)

dW(1)

dL
db(1)

=
dL
dz(1)

dz(1)

db(1)
.

We know that z(1) = W(1)x + b(1). Let’s start with the bias, we simply have

dL
db

(1)
i

=

M1∑
j=1

dL
dz

(1)
j

dz
(1)
j

db
(1)
i

=
dL
dz

(1)
i

,

since b
(1)
i only affects z

(1)
i , and not any other z

(1)
j where j 6= i. Evaluating the

derivative with respect to the weights matrix W(1) is a bit more complex. We
have

z
(1)
i =

M0∑
j=1

W
(1)
i,j xj + b

(1)
i ,

and therefore

dL
dW

(1)
i,j

=

M1∑
k=1

dL
dz

(1)
k

dz
(1)
k

dW
(1)
i,j

=
dL
dz

(1)
i

xj ,

since we can see in the sum that z
(1)
i only depends on W

(1)
i,j from j = 1 to

j = M1. We can also express this in matrix notation as

dL
dW(1)

=
dL
dz(1)

xT .

5



3 Backpropagation: recursive case intro

Now, let’s say that we have a multilayer neural network. The last layer sim-
ply looks like logistic regression, except that now instead of x, we have the
activations in the second-to-last layer h(L−1). We therefore have:

dL
db(L)

=
dL
dz(L)

dL
dW(L)

=
dL
dz(L)

(h(L−1))T .

But how can we get the derivatives with respect to the weights in the preceding
layers? Well, we note that the previous layers only affect L via h(L−1), so we
simply need to know dL

dh(L−1) . Since we know that

z(L) = W(L)h(L−1) + b(L)

and therefore

z
(L)
i =

ML−1∑
j=1

W
(L)
i,j h

(L−1)
j + b

(L)
i ,

we can derive

dL
dh

(L−1)
j

=

ML∑
i=1

dL
dz

(L)
i

dz
(L)
i

dh
(L−1)
j

=

ML∑
i=1

dL
dz

(L)
i

W
(L)
i,j =

ML∑
i=1

(
(W(L))T

)
j,i

dL
dz

(L)
i

in matrix notation, this simply becomes

dL
dh(L−1)

= (W(L))T
dL
dz(L)

.

Now, we can simply proceed recursively, and use dL
dh(L−1) in place of dL

dh(L) to

compute the derivatives with respect to W(L−1) and b(L−1).

6


	Neural Networks Summary
	Backpropagation: base case
	Backpropagation: recursive case

