
Week 9: Expectation Maximization

Instructor: Sergey Levine

1 EM Recap

Last week, we saw how we could represent clustering with a probabilistic model.
In this model, called a Gaussian mixture model, we model each datapoint xi as
originating from some cluster, with a corresponding cluster label yi distributed
according to p(y), and the corresponding distribution for that cluster given by
a multivariate Gaussian:

p(x|y = k) =
1√

(2π)D|Σk|
exp

(
−1

2
(x− µk)TΣ−1k (x− µk)

)
.

Our goal is to maximize the (log) likelihood of the data, as usual, which is given
by

L =

N∏
i=1

p(xi),

but because we don’t know the cluster labels yi associated with each datapoint
xi, we must marginalize them out:

L =

N∏
i=1

p(xi) =

N∏
i=1

K∑
k=1

p(xi, yi = k) =

N∏
i=1

K∑
k=1

p(xi|yi = k)p(yi = k).

The resulting objective cannot be optimized in closed form, and while we could
use gradient ascent, we saw a much more convenient and effective algorithm
called expectation maximization (EM):

Algorithm 1 EM

1: Initialize means and covariances
2: while not converged do
3: E-step: estimate wik for each datapoint i and each cluster k
4: M-step: fit µk and Σk using the weighted MLE fit
5: end while

In EM, we explicitly estimate a distribution p(yi = k|xi) = wik during the E-
step, and then maximize the expected log-likelihood in the M step with respect

1

to the model parameters. The expected log-likelihood is given by

L̂ =

N∑
i=1

K∑
k=1

wik log p(xi, yi = k).

The expected log-likelihood is not the same as the marginal (log) likelihood!
However, it is easy to see that EM maximizes the expected log-likelihood if we
decouple wik and p(xi, yi = k) in this way. So then the question is: does EM
also maximize the marginal likelihood?

2 What Does EM Optimize?

To understand what EM optimizes, we’ll introduce a little bit of notation for
clarity. When we update wik, we set wik = p(yi = k|xi). However, in the
E-step, we hold wik fixed, even though we change p(xi, yi). To make it a bit
clearer which model is being used in each step, we’ll condition the probability
on the parameter values θ = {µ1,Σ1, . . . , µK ,ΣK}, where θ denotes the old
parameters during a single iteration, and θ′ denotes the new parameters we
get at the end of the M-step. Therefore, we have wik = p(yi = k|xi, θ). The
expected log-likelihood is therefore given by

L̂(θ′) =

N∑
i=1

K∑
k=1

p(yi = k|xi, θ) log p(xi, yi = k|θ′) =

N∑
i=1

Eyi∼p(yi|xi,θ)[log p(xi, yi|θ′)],

hence the name expected log-likelihood.
We’ll also introduce a very useful relation called Jensen’s inequality. The

particular form of Jensen’s inequality for logarithms tells us that

log

[
K∑
k=1

wkak

]
≥

K∑
k=1

wk log ak,

when wk > 1 and
∑
k wk = 1: that is, the log of a weighted sum is greater than

or equal to the weighted sum of logs.
With these definitions, we can show that one iteration of EM actually op-

timizes the marginal log-likelihood L, where we use L(θ) to denote the log-
likelihood under the old parameters, and L(θ′) under the new parameters, which
is what we are trying to find. To recap, the marginal log-likelihood is given by

L(θ) =

N∑
i=1

log p(xi|θ) =

N∑
i=1

log

[
K∑
k=1

p(xi, yi = k|θ)

]
We would like an algorithm that increases the marginal log-likelihood at each
iteration, since that’s the log-probability of the data (while the expected log-
likelihood is just some nonsense we made up). So, specifically, we would like to
have

L(θ′) > L(θ),

2

so we want to maximize L(θ′) − L(θ). We can write the difference between
the new and old log-likelihood as following (we will omit the sum over i for
convenience, but it’s always there):

L(θ′)− L(θ) = log

[
K∑
k=1

p(xi|yi = k, θ′)p(yi = k|θ′)

]
− log p(xi|θ)

= log

[
K∑
k=1

p(xi|yi = k, θ′)p(yi = k|θ′)p(yi = k|xi, θ)
p(yi = k|xi, θ)

]
− log p(xi|θ)

= log

[
K∑
k=1

p(yi|xi, θ)
p(xi|yi = k, θ′)p(yi = k|θ′)

p(yi = k|xi, θ)

]
− log p(xi|θ).

Now we’ll apply Jensen’s inequality to the first part of this equation. Jensen’s
inequality tells us that the log of a weighted sum is greater than or equal to
the weighted sum of the log of the thing being summed. Here, we’ll choose
p(yi = k|xi, θ) as the weight. We know that these sum to 1, because they are
probabilities, so we have

L(θ′)− L(θ) = log

[
K∑
k=1

p(yi = k|xi, θ)
p(xi|yi = k, θ′)p(yi = k|θ′)

p(yi = k|xi, θ)

]
− log p(xi|θ)

≥
K∑
k=1

p(yi = k|xi, θ) log
p(xi|yi = k, θ′)p(yi = k|θ′)

p(yi = k|xi, θ)
− log p(xi|θ).

Now note that the last part doesn’t depend on k, so we can insert a sum over k
to get

K∑
k=1

p(yi = k|xi, θ)
[
log

p(xi|yi = k, θ′)p(yi = k|θ′)
p(yi = k|xi, θ)

− log p(xi|θ)
]

=

K∑
k=1

p(yi = k|xi, θ) [log p(xi|yi = k, θ′)p(yi = k|θ′)− log p(yi = k|xi, θ)p(xi|θ)] ,

where the last part comes from the fact that we can rewrite products of logs
as sums (and ratios as differences). Note that the part of this equation that
depends on θ′ (the first part) is exactly the expected log-likelihood! This means
that the M-step simply optimizes a bound on the difference between the new
log-likelihood and the previous one. So if we can make this quantity positive,
we know that we’ll improve the marginal log-likelihood.

This turns out to be very simple to show: if we have θ = θ′, then the bound
is exactly zero. So if we maximize the bound with respect to θ′, we know that
the improvement must be at least zero, since the trivial setting of θ = θ′ already
achieves zero. This means that EM will never make the objective worse, and it
will improve the objective unless the algorithm has converged and θ = θ′.

For notational convenience and to avoid keeping around old and new param-
eter values θ and θ′, oftentimes people use q(yi = k) to denote p(yi = k|θ) (the

3

probability of a label under the old parameter values). We’ll use this notation
below as well.

3 EM for Missing Data

So far, we saw how EM could be used for probabilistic clustering with Gaussian
mixture models. However, EM is a general algorithm for optimizing probabilistic
models in missing data settings: that is, settings where some entries in yi or xi
are not available during training. In the case of clustering, the hypothesis space
corresponds to Gaussian mixture models, and the missing data corresponds to all
of the labels yi. In the general case of EM, the step computes a joint distribution
over all missing variables for each datapoint, and the M-step maximizes the
corresponding expected log-likelihood. Note that we do not distinguish at this
point which variables are x and which are y.

First, let’s introduce this idea for formally. Let D = {x1, . . . ,xN}. If we have
labels y, let’s assume for now that they are just stored in the last coordinate of
x. Then, for every datapoint, let Ii denote the indices that are known, and let Ji
denote the indices that are missing. So we know xiIi , but do not know xiJi . The

E-step of EM then constructs distributions of the form q(xiJi) = p(xiJi |x
i
Ii

) by
using inference (Bayes rule). The M-step maximizes the expected log-likelihood,
given by

L̂ =

N∑
i=1

∑
xi
Ji

q(xiJi) log p(xiIi ,x
i
Ji)

We can show that this optimizes the marginal likelihood by the same procedure
as before. To summarize the full algorithm:

Algorithm 2 EM – general version

1: Initialize model parameters θ
2: while not converged do
3: E-step: estimate q(xiJi)← p(xiJi |x

i
Ii
, θ) based on θ

4: M-step: fit θ ← arg maxθ
∑N
i=1

∑
xi
Ji

q(xiJi) log p(xiIi ,x
i
Ji
|θ)

5: end while

4 Example of Missing Data

To understand why working with missing data can be important, let’s consider
a simple example. We’ll go back to a simplified version of the disease example
from earlier in the quarter, and we’ll try to fit a classifier with näıve Bayes,
using EM to deal with missing data. Here is another patient dataset:

4

patient fever? x1 cough? x2 disease? y
A 1 ? 1
B 0 ? 0
C 1 0 ?
D 0 1 ?

This dataset has missing data: we don’t know whether patients A and B
have a cough, and we don’t have a diagnosis for patients C and D. What if we
get a new patient who has a cough, and we don’t have a thermometer on hand
to diagnose them?

Question. Can we diagnose this patient?

Answer. Yes, because we know from the data that fever is anticorrelated with
cough (for some reason)! In fact, if we use EM, we actually figure this out. Let’s
assume that we initialize all factors to be uniformly distributed, so that initially:

p(x2 = 1|y = 0) =
1

2
p(x2 = 1|y = 1) =

1

2
.

Then, during the E-step, we’ll fill in a probability of 1
2 for every assignment to

x2 and y. Then, during the next M-step, we’ll fit p(y = 1) = 1
2 , p(x1 = 1|y =

1) = 1, p(x1 = 1|y = 0) = 0, and p(x2 = 1|y = 1) = 0 = 1
2 .

During the next E-step, we’ll then assign a higher probability that x2 = 0
for patient A and a higher probability that x2 = 1 for patient B! Similarly, we’ll
assign a higher probability that y = 1 for C and y = 0 for D. At convergence,
we’ll be certain that p(x2 = 1|y = 1) = 0 and p(x2 = 1|y = 1) = 1, meaning
that only patients without a cough have the disease, all without ever having
seen a diagnosed patient with a cough.

Note that this is all despite the feature independence assumption of näıve
Bayes. Why? Well, in näıve Bayes, the features are only independent if y is
known. Since y is not known for patients C and D, the features are in fact not
independent!

5

	EM Recap
	What Does EM Optimize?
	EM for Missing Data
	Example of Missing Data

