
Week 8: Expectation Maximization

Instructor: Sergey Levine

1 Probabilistic Clustering

So far, we discussed clustering algorithms that involve a hard assignment of
each datapoint to a cluster, typically based on its proximity to other points
in that cluster. However, simply assigning points to the nearest cluster is not
always adequate to capture more complex structure. For example, the lecture
slides show an example where one cluster is much larger and less dense than
another. We’ll discuss a probabilistic clustering method that can capture this by
introducing two new ingredients: soft assignment of points xi to each cluster,
and using additional parameters to discuss the shape of a cluster, so as to
capture the fact that clusters can be large, small, sparse, or dense.

2 A Generative Mixture Model

In order to design a probabilistic clustering model, we have to think about a
probabilistic process that gives rise to the data. In the case of clustering, the
consists of vectors xi ∈ RD, but we believe that this data originates from a
set of discrete clusters. So a natural choice for the probabilistic process looks
like this: if you want to generate a new datapoint x, choose a cluster index y
at random from the cluster prior p(y), and then generate the point x from the
distribution associated with that cluster, p(x|y).

You might have noticed at this point that the model looks a lot like näıve
Bayes. Indeed, since we have y ∈ {1, . . . ,K}, and x ∈ RD, a reasonable choice
for p(y) would be a multinomial distribution, and a reasonable choice for p(x|y)
might be a product of independent Gaussians, each given by

p(xj |y = k) =
1

σk,j
√

2π
exp

(
− (xj − µk,j)

2

2σ2
k,j

)
.

This model allows us to describe clusters that are different shape, since we can
assign a different variance σ2

k,j to each dimension j of each cluster k. So, for
example, if x has two dimensions, and we want to create a cluster that is tall
and skinny, we might set σ2

k,1 = 0.1 and σ2
k,2 = 10.0. Note that so far we are

simply describing a generative model: a model that can generate datapoints
that originate from a mixture of clusters. We have not yet discussed how this
model can be trained on data.
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Before we do, let’s introduce a slightly more sophisticated way to handle the
condition distribution p(x|y). In näıve Bayes, we assume that all dimensions
of x are independent. This corresponds to ellipsoidal clusters, where the major
and minor axes of the ellipsoids are aligned with the axes. But what if we also
want to model clusters that are not axis-aligned? Such clusters have covariance
between different dimensions of x: that is, if we have a cluster in 2D that oriented
diagonally, what that really means is that x1 and x2 are strongly correlated:
for example, if the major axis is oriented along the line x1 = x2, what that
means is that, as x1 gets bigger, x2 is likely to also get bigger. That means that
x1 and x2 have positive covariance. In order to model covariance between the
dimensions of x, we need to use a multivariate Gaussian distribution, given by

p(x|y = k)
1√

(2π)D|Σk|
exp

(
−1

2
(x− µk)T Σ−1

k (x− µk)

)
.

Note that the form of this distribution is very similar to the univariate Gaussian,
except that the exponent now includes a matrix Σk, instead of a scalar variance
σ2
k. The entries in the matrix Σk are the covariances of the various dimensions

of x. Entries along the diagonal are the variances of each dimension, so

Σk,i,i = E[(xi − µk,i)
2].

Off-diagonal entries are covariances between different dimensions:

Σk,i,j = E[(xi − µk,i) · (xj − µk,j)].

Just like with the univariate Gaussian, we can estimate the parameters of a mul-
tivariate Gaussian using MLE by differentiating the probability density function
and setting the derive to zero. The corresponding solution for the mean is given
by

µ =
1

N

N∑
i=1

xi,

and the solution for the covariance is

Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)T .

If we want to fit a conditional model of the form p(x|y), where there is a different
multivariate Gaussian for each value of y, we can do that also. If we have labels
yi for each datapoint xi, we can do this analogously to the method we used for
näıve Bayes:

µk =
1

Count(yi = k)

∑
i:yi=k

xi

Σk =
1

Count(yi = k)

∑
i:yi=k

(xi − µk)(xi − µk)T

But how can we do this in the case of clustering, when the labels yi are unknown?
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3 Expectation Maximization

To start thinking about this, let’s imagine a simplified scenario: imagine that
we already have a model p(x, y) defined by K multivariate Gaussians and a
prior p(y), and now we are given a dataset x1, . . . ,xN without labels. How can
we recover a guess about the labels? Well, this is simply a prediction problem,
and our (already trained) model can give us a distribution over the label of each
datapoint. Just like we did with näıve Bayes, we can apply Bayes rule to get:

p(y|x) =
p(x, y)

p(x)
=
p(x|y)p(y)

p(x)
∝ p(x|y)p(y).

So if we want to know p(yi = k|xi), we just compute p(xi|yi = k)p(yi = k) for
each value of k ∈ {1, . . . ,K}, and then normalize so that the probabilities of
the K different labels sum to one. As we learned before, this is called inference.
So we first evaluate the unnormalized probability for each datapoint:

w̃ik = p(yi = k)
1√

(2π)D|Σk|
exp

(
−1

2
(xi − µk)T Σ−1

k (xi − µk)

)
,

and then normalize to get

wik =
w̃ik∑K

k′=1 w̃ik′
.

So if we are lucky enough to already have a trained model, we can invert that
model using Bayes rule to obtain a distribution over labels for each datapoint.

Now, let’s assume the opposite: we have probabilistic assignments of each
datapoint to clusters, in the form of weights wik = p(yi = k|xi), and we wish to
fit the model parameters: the prior p(y) and the distributions p(x|y = k). Well,
this is simply a variant of the MLE fit in the previous section, except that now,
instead of having labels yi = k, we have soft labels, in the form of a weight on
each sample. As we discussed before, we can fit a weighted classifier of this type
easily simply by replacing all counts by weighted counts:

µk =
1∑N

i=1 wik

N∑
i=1

xiwik

Σk =
1∑N

i=1 wik

N∑
i=1

(xi − µk)(xi − µk)Twik.

We can also update our prior according to

p(y = k) =

∑N
i=1 wik∑N

i=1

∑K
k′=1 wik′

.
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When we have a model and we obtain a label distribution p(yi = k|xi) = wik,
we are really getting a distribution over the expected labels (expected under
our model), so we can call this the “expectation step” or E-step. When we
have a distribution over labels and we wish to update our model parameters
p(y), µ1, . . . , µK ,Σ1, . . . ,ΣK , we are maximizing the likelihood of our expected
labels, so we can call this the “maximization step,” or M-step. If we simply
alternate these two steps, we get an algorithm called the EM algorithm, which
we can write like this:

Algorithm 1 EM clustering

1: Initialize means and covariances (more on this later)
2: while not converged do
3: E-step: estimate wik for each datapoint i and each cluster k
4: M-step: fit µk and Σk using the weighted MLE fit
5: end while

If this sounds familiar, it’s because it is: this is just a “soft” version of K-
means clustering. Instead of making a hard assignment of a label yi to each
datapoint xi, EM instead computes weights for each possible assignment based
on the proximity of the corresponding cluster. Furthermore, EM allows each
cluster to have not only a mean µk (which we previously denoted ck), but also
a covariance Σk, which describes the shape of the cluster. This allows for large
diffuse clusters and small dense ones, and the “nearest” cluster is no longer the
one with the closest mean, but rather the one for which the mean is closest under
the corresponding covariance matrix, so large clusters might still be “closest”
even if they are further away in Euclidean space, if they have a larger covariance.
We can modify EM to exactly recover K-means as following:

Algorithm 2 Hard EM clustering (k-means)

1: Initialize means and covariances (more on this later)
2: while not converged do
3: E-step: estimate yi = arg maxk wik for each datapoint i
4: M-step: fit µk using the weighted MLE fit, set Σk = I
5: end while

4 EM Objective

Now we have a dataset, a hypothesis space (all Gaussian mixture models with
K elements), and an algorithm (EM), but what is the objective? The objective
of probabilistic clustering is marginal likelihood: the likelihood of the data if we
marginalize out the unknown labels yi – that is, the likelihood of the data if we
average together the likelihoods for each possible assignment to yi, weighted by
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its probability. This likelihood is given by

L =

N∏
i=1

p(xi) =

N∏
i=1

K∑
k=1

p(yi = k,xi) =

N∏
i=1

K∑
k=1

p(yi = k)p(xi|yi = k). (1)

It is in fact possible to optimize this likelihood directly, but it is very difficult,
because there is no closed form solution. We can compute its gradient with
respect to the parameters of the model (the entries in p(y), the means µk, and
the covariances Σk), and then use an algorithm like gradient ascent. However,
this procedure is numerically tricky and extremely prone to poor local optima.
The EM algorithm provides an efficient and simple method of optimizing this
objective, by explicitly tracking the probability of each label for each datapoint,
p(yi = k|xi) = wik. We’ll show this in detail in the next lecture, but for now
we’ll discuss the intuition. In EM, we consider a quantity called the expected
log likelihood, which is given by

L̂ =

N∑
i=1

K∑
k=1

q(yi = k|xi) log p(yi = k,xi) =

M∑
i=1

Eq[log p(yi = k,xi)],

where q(yi = k|xi) is the probability of points xi having the label k given the
model from the previous iteration of EM. That is, q(yi = k|xi) = wik. The
M-step directly optimizes the model parameters p(y),mu1, . . . , µK ,Σ1, . . . ,ΣK

with respect to the expected log-likelihood. The E-step doesn’t change the
model parameters, but it updates wik so that the distribution q(yi = k|xi) is
equal to the latest model p(yi = k|xi): that is, it makes q more like p. So
the intuition behind why EM works is that it alternates between optimizing
a slightly different objective (the expected likelihood) in the M-step, and then
modifying that objective to correspond to the current model p in the E-step.
We will see a more formal connection to the marginal likelihood in the next
lecture.
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