CSE446: Logistic Regression
Winter 2015

Luke Zettlemoyer

Slides adapted from Carlos Guestrin
Let's take an(other) probabilistic approach!!!

• Previously: directly estimate the data distribution $P(X,Y)$!
 – challenging due to size of distribution!
 – make Naïve Bayes assumption: only need $P(X_i|Y)$!

• But wait, we classify according to:
 – $\max_Y P(Y|X)$

• Why not learn $P(Y|X)$ directly?
Logistic Regression

- Learn $P(Y|X)$ directly!
 - Reuse ideas from regression, but let y-intercept define the probability

 $P(Y = 1|X, w) \propto \exp(w_0 + \sum_i w_i X_i)$

 $P(Y = 0|X, w) \propto 1$

 - With normalization constants:

 $P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$

 $P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$

The Exponential function: $y = e^x = \exp(x)$

The Logistic function: $y = \frac{1}{1 + \exp(-x)}$
Logistic Regression: decision boundary

\[
P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \quad P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

- **Prediction**: Output the Y with highest \(P(Y|X)\)
 - For binary Y, output \(Y=1\) if

\[
1 < \frac{P(Y = 1|X)}{P(Y = 0|X)}
\]

\[
1 < \exp(w_0 + \sum_{i=1}^n w_i X_i)
\]

\[
0 < w_0 + \sum_{i=1}^n w_i X_i
\]

A Linear Classifier!
Visualizing 1D inputs

\[P(Y = 0|X, w) = \frac{1}{1 + exp(w_0 + w_1 x_1)} \]

Notes:
- Defines a probability distribution over \(Y \) in \{0,1\} for every possible input \(X \)
- Decision boundary: \(P(Y=0|X,w)=0.5 \) when at the \(y=0 \) point on the line
- Slope of line defines how quickly probabilities go to 0 or 1 around decision boundary
Visualizing 2D inputs

$w_1=1$, $w_2=1$, $w_0=0$

$w_1=-1$, $w_2=1$, $w_0=0$

$w_1=10$, $w_2=10$, $w_0=0$

$w_1=-1$, $w_2=1$, $w_0=5$

What about higher dimensions?

- Difficult to visualize!
- $P(Y=0|X,w)$ decreases as $w_0 + \sum_i w_i x_i$ increases
- Decision boundary is defined by $y=0$ hyperplane

$$P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + w_1 x_1 + w_2 x_2)}$$
Loss functions / Learning Objectives: Likelihood v. Conditional Likelihood

- Generative (Naïve Bayes) Loss function:
 Data likelihood

\[\ln P(D \mid w) = \sum_{j=1}^{N} \ln P(x^j, y^j \mid w) \]

\[= \sum_{j=1}^{N} \ln P(y^j \mid x^j, w) + \sum_{j=1}^{N} \ln P(x^j \mid w) \]

- But, discriminative (logistic regression) loss function:
 Conditional Data Likelihood

\[\ln P(D_{Y \mid X}, w) = \sum_{j=1}^{N} \ln P(y^j \mid x^j, w) \]

- Doesn’t waste effort learning \(P(X) \) – focuses on \(P(Y \mid X) \) all that matters for classification
- Discriminative models cannot compute \(P(x^j \mid w) \)!
Conditional Log Likelihood
(the binary case only)

\[l(w) \equiv \sum_j \ln P(y^j|x^j, w) \]

\[P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i x_i)} \]

\[P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_i w_i x_i)}{1 + \exp(w_0 + \sum_i w_i x_i)} \]

equal because \(y^j \) is in \{0,1\}

\[l(w) = \sum_j y^j \ln P(y^j = 1|x^j, w) + (1 - y^j) \ln P(y^j = 0|x^j, w) \]

remaining steps: substitute definitions, expand logs, and simplify

\[= \sum_j y^j \ln \frac{e^{w_0 + \sum_i w_i x_i}}{1 + e^{w_0 + \sum_i w_i x_i}} + (1 - y^j) \ln \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}} \]

\[\cdots \]

\[= \sum_j y^j (w_0 + \sum_i w_i x_i^j) - \ln(1 + \exp(w_0 + \sum_i w_i x_i^j)) \]
Logistic Regression Parameter Estimation:
Maximize Conditional Log Likelihood

\[l(w) \equiv \ln \prod_j P(y^j|x^j, w) \]

\[= \sum_j y^j (w_0 + \sum_i^n w_i x_i^j) - \ln(1 + \exp(w_0 + \sum_i^n w_i x_i^j)) \]

Good news: \(l(w) \) is concave function of \(w \)

\[\rightarrow \text{no locally optimal solutions!} \]

Bad news: no closed-form solution to maximize \(l(w) \)

Good news: concave functions “easy” to optimize
Optimizing convex function – Gradient ascent

- Conditional likelihood for Logistic Regression is convex!

Gradient:
\[\nabla_w l(w) = \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right]' \]

Update rule:
\[\Delta w = \eta \nabla_w l(w) \]
\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(w)}{\partial w_i} \]

- Gradient ascent is simplest of optimization approaches
 - e.g., Conjugate gradient ascent much better (see reading)
Maximize Conditional Log Likelihood: Gradient ascent

\[l(w) = \sum_j y^j (w_0 + \sum_i^n w_i x_i^j) - \ln (1 + \exp(w_0 + \sum_i^n w_i x_i^j)) \]

\[\frac{\partial l(w)}{\partial w_i} = \sum_j \left[\frac{\partial}{\partial w} y^j (w_0 + \sum_i^n w_i x_i^j) - \frac{\partial}{\partial w} \ln \left(1 + \exp(w_0 + \sum_i^n w_i x_i^j) \right) \right] \]

\[= \sum_j \left[y^j x_i^j - \frac{x_i^j \exp(w_0 + \sum_i^n w_i x_i^j)}{1 + \exp(w_0 + \sum_i^n w_i x_i^j)} \right] \]

\[= \sum_j x_i^j \left[y^j - \frac{\exp(w_0 + \sum_i^n w_i x_i^j)}{1 + \exp(w_0 + \sum_i^n w_i x_i^j)} \right] \]

\[\frac{\partial l(w)}{\partial w_i} = \sum_j x_i^j (y^j - P(Y^j = 1|x^j, w)) \]
\[
\begin{align*}
w_i(t+1) &= w_i(t) + \eta \frac{\partial l(w)}{\partial w_i} \\
\frac{\partial l(w)}{\partial w_i} &= \sum_j x_i^j \left(y^j - P(Y^j = 1|x^j, w) \right) \\
P(Y = 1|X, W) &= \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\end{align*}
\]

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>-2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

$t=0:
\begin{align*}
w &= [w_0, w_1, w_2] = [0, 0, 0] \\
P(Y^0=1|x^0, w) \propto \exp(0+0*3+0*-3) &= 0.5 \\
P(Y^1=1|x^1, w) \propto \exp(0+0*-2+0*2) &= 0.5 \\
i=0, j=0: x_0^0(Y^0=P(Y^0=1|x^0, w)) &= 1(1-0.5) = 0.5 \\
i=0, j=1: x_0^1(Y^1=P(Y^1=1|x^1, w)) &= 1(0-0.5) = -0.5 \\
i=1, j=0: x_1^0(Y^0=P(Y^0=1|x^0, w)) &= 3(1-0.5) = 1.5 \\
i=1, j=1: x_1^1(Y^1=P(Y^1=1|x^1, w)) &= 2(0-0.5) = -1.0 \\
\text{grad} &= [0.5-0.5, 1.5+1.0, -1.5-1] = [0.25, -2.5] \\
t=1:
\begin{align*}
\eta = 0.1 \implies w &= [0, 0, 0] + 0.1 \times [0.25, -2.5] = [0.0, 0.25, -0.25] \\
P(Y^0=1|x^0, w) \propto \exp(0.25*3-0.25*-3) &= 0.82 \\
P(Y^1=1|x^1, w) \propto \exp(0.25*-2-0.25*2) &= 0.27 \\
i=0, j=0: x_0^0(Y^0=P(Y^0=1|x^0, w)) &= 1(1-0.82) = 0.18 \\
i=0, j=1: x_0^1(Y^1=P(Y^1=1|x^1, w)) &= 1(0-0.27) = -0.27 \\
i=1, j=0: x_1^0(Y^0=P(Y^0=1|x^0, w)) &= 3(1-0.82) = 0.54 \\
i=1, j=1: x_1^1(Y^1=P(Y^1=1|x^1, w)) &= 2(0-0.27) = 0.54 \\
i=2, j=0: x_2^0(Y^0=P(Y^0=1|x^0, w)) &= -3(1-0.82) = -0.54 \\
i=2, j=1: x_2^1(Y^1=P(Y^1=1|x^1, w)) &= 2(0-0.27) = -0.54 \\
\text{grad} &= [0.13-0.27, 0.54+0.54, -0.54-0.54] = [-0.14, 1.04, -1.04]
\end{align*}
\]
Gradient Ascent for LR

Gradient ascent algorithm: (learning rate $\eta > 0$)

do:

$$w_0(t+1) \leftarrow w_0(t) + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid x^j, w)]$$

For $i=1...n$: (iterate over weights)

$$w_i(t+1) \leftarrow w_i(t) + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid x^j, w)]$$

until “change” < ε

Loop over training examples!
Large parameters...

\[
\frac{1}{1 + e^{-ax}}
\]

- **Maximum likelihood solution**: prefers higher weights
 - higher likelihood of (properly classified) examples close to decision boundary
 - larger influence of corresponding features on decision
 - *can cause overfitting***!

- **Regularization**: penalize high weights
 - again, more on this later in the quarter
That’s all M(C)LE. How about MAP?

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

• One common approach is to define priors on \(w \)
 – Normal distribution, zero mean, identity covariance
 – “Pushes” parameters towards zero

• Often called \textit{Regularization}
 – Helps avoid very large weights and overfitting

• MAP estimate:
 \[
 w^* = \arg \max_w \ln \left[p(w) \prod_{j=1}^N p(y^j \mid x^j, w) \right]
 \]
M(C)AP as Regularization

\[\mathbf{w}^* = \arg \max_w \ln \left[p(\mathbf{w}) \prod_{j=1}^N P(y^j | \mathbf{x}^j, \mathbf{w}) \right] \quad p(\mathbf{w}) = \prod_i \frac{1}{\kappa \sqrt{2\pi}} \frac{-w_i^2}{e^{2\kappa^2}} \]

• Add \(\log p(\mathbf{w}) \) to objective:

\[
\ln p(\mathbf{w}) \propto -\frac{\lambda}{2} \sum_i w_i^2 \quad \frac{\partial \ln p(\mathbf{w})}{\partial w_i} = -\lambda w_i
\]

– Quadratic penalty: drives weights towards zero
– Adds a negative linear term to the gradients

Penalizes high weights, also applicable in linear regression
MLE vs. MAP

• Maximum conditional likelihood estimate

\[w^*_i = \arg \max_w \ln \left(\prod_{j=1}^{N} P(y^j | x^j, w) \right) \]

\[w^{(t+1)}_i \leftarrow w^{(t)}_i + \eta \sum_j x^j_i [y^j - \hat{P}(Y^j = 1 | x^j, w)] \]

• Maximum conditional a posteriori estimate

\[w^*_i = \arg \max_w \ln \left(\frac{p(w)}{\prod_{j=1}^{N} P(y^j | x^j, w)} \right) \]

\[w^{(t+1)}_i \leftarrow w^{(t)}_i + \eta \left\{ -\lambda w^{(t)}_i + \sum_j x^j_i [y^j - \hat{P}(Y^j = 1 | x^j, w)] \right\} \]
\[
\begin{align*}
\mathbf{w}_i^{(t+1)} & \leftarrow \mathbf{w}_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial \mathbf{w}_i} \\
\frac{\partial l(\mathbf{w})}{\partial \mathbf{w}_i} & = \sum_j x^j_i \left(y^j - P(Y^j = 1|x^j, \mathbf{w}) \right) - \lambda \mathbf{w}_i \\
P(Y = 1|X, \mathbf{W}) & = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\end{align*}
\]

\(t=0:\)
\[
\mathbf{w} = [w_0, w_1, w_2] = [0, 0, 0]
\]
... see earlier slide, same computations as without regularization...
\(\lambda=0.1 \rightarrow \text{grad} = 0.1 \times [0, 0, 0]\)

\(t=1:\)
\[
\eta=0.1 \rightarrow \mathbf{w} = [0, 0, 0] + 0.1 \times [0, 2.5, -2.5] = [0, 0.25, -0.25]
\]
... see earlier slide, same computations as without regularization...
\(\lambda=0.1 \rightarrow \text{grad} = 0.1 \times [0, 0.25, -0.25]\)

\(t=2:\)
...
Logistic regression for discrete classification

Logistic regression in more general case, where set of possible Y is \{y_1,...,y_R\}

- Define a weight vector w_i for each y_i, $i=1,...,R-1$

\[
P(Y = 1|X) \propto \exp(w_{10} + \sum_i w_{1i}X_i)
\]

\[
P(Y = 2|X) \propto \exp(w_{20} + \sum_i w_{2i}X_i)
\]

\[
\vdots
\]

\[
P(Y = r|X) = 1 - \sum_{j=1}^{r-1} P(Y = j|X)
\]
Logistic regression: discrete Y

- Logistic regression in more general case, where Y is in the set $\{y_1, ..., y_R\}$
 - for $k < R$
 \[
P(Y = y_k|X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki}X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}
 \]
 - for $k = R$ (normalization, so no weights for this class)
 \[
P(Y = y_R|X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}
 \]

Features can be discrete or continuous!
Logistic regression v. Naïve Bayes

• Consider learning \(f: X \rightarrow Y \), where
 – \(X \) is a vector of real-valued features, \(\langle X_1 \ldots X_n \rangle \)
 – \(Y \) is boolean

• Could use a Gaussian Naïve Bayes classifier
 – assume all \(X_i \) are conditionally independent given \(Y \)
 – model \(P(X_i | Y = y_k) \) as Gaussian \(\mathcal{N}(\mu_{ik}, \sigma_i) \)
 – model \(P(Y) \) as Bernoulli(\(\theta \),1-\(\theta \))

• What does that imply about the form of \(P(Y | X) \)?

\[
P(Y = 1 | X = \langle X_1, \ldots X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

Cool!!!!!
Derive form for $P(Y|X)$ for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

$$= \frac{1}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}$$

$$= \frac{1}{1 + \exp(\ln \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)})}$$

$$= \frac{1}{1 + \exp(\ln \frac{1-\theta}{\theta} + \sum_i \ln \frac{P(X_i|Y = 0)}{P(X_i|Y = 1)})}$$

Looks like a setting for w_0?
Can we solve for w_i?
• Yes, but only in Gaussian case

up to now, all arithmetic

only for Naïve Bayes models
Ratio of class-conditional probabilities

\[
\ln \frac{P(X_i | Y = 0)}{P(X_i | Y = 1)} = \ln \left[\frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x_i - \mu_{i0})^2}{2\sigma_i^2}} \right] \left[\frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x_i - \mu_{i1})^2}{2\sigma_i^2}} \right] \\
= -\frac{(x_i - \mu_{i0})^2}{2\sigma_i^2} + \frac{(x_i - \mu_{i1})^2}{2\sigma_i^2} \\
\ldots \\
= \frac{\mu_{i0} + \mu_{i1}}{\sigma_i^2} x_i + \frac{\mu_{i0}^2 + \mu_{i1}^2}{2\sigma_i^2}
\]

\[
P(X_i = x | Y = y_k) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x-\mu_{ik})^2}{2\sigma_i^2}}
\]

Linear function! Coefficients expressed with original Gaussian parameters!
Derive form for $P(Y|X)$ for continuous X_i.

\[
P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}
\]

\[
= \frac{1}{1 + \exp\left(\ln\frac{1-\theta}{\theta} + \sum_i \ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)}\right)}
\]

\[
= \frac{1}{1 + \exp\left(w_0 + \sum_{i=1}^{n} w_i X_i\right)}
\]

\[
w_0 = \ln\frac{1-\theta}{\theta} + \frac{\mu_{i0}^2 + \mu_{i1}^2}{2\sigma_i^2}
\]

\[
w_i = \frac{\mu_{i0} + \mu_{i1}}{\sigma_i^2}
\]
Gaussian Naïve Bayes vs. Logistic Regression

- Representation equivalence
 - But only in a special case!!! (GNB with class-independent variances)
- But what’s the difference???
- LR makes no assumptions about $P(X|Y)$ in learning!!!
- Loss function!!!
 - Optimize different functions! Obtain different solutions
Naïve Bayes vs. Logistic Regression

Consider Y boolean, X_i continuous, $X = <X_1 \ldots X_n>$

Number of parameters:

- Naïve Bayes: $4n + 1$
- Logistic Regression: $n+1$

Estimation method:

- Naïve Bayes parameter estimates are uncoupled
- Logistic Regression parameter estimates are coupled
Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

• Generative vs. Discriminative classifiers

• Asymptotic comparison
 (# training examples → infinity)
 – when model correct
 • GNB (with class independent variances) and LR produce identical classifiers

 – when model incorrect
 • LR is less biased – does not assume conditional independence
 – therefore LR expected to outperform GNB
Naïve Bayes vs. Logistic Regression

• Generative vs. Discriminative classifiers
• Non-asymptotic analysis
 – convergence rate of parameter estimates,
 \(n = \# \text{ of attributes in } X \)
 • Size of training data to get close to infinite data solution
 • Naïve Bayes needs \(O(\log n) \) samples
 • Logistic Regression needs \(O(n) \) samples

– GNB converges more quickly to its (perhaps less helpful) asymptotic estimates

[Ng & Jordan, 2002]
Some experiments from UCI data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.
What you should know about Logistic Regression (LR)

• Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 – Solution differs because of objective (loss) function
• In general, NB and LR make different assumptions
 – NB: Features independent given class ! assumption on $P(X|Y)$
 – LR: Functional form of $P(Y|X)$, no assumption on $P(X|Y)$
• LR is a linear classifier
 – decision rule is a hyperplane
• LR optimized by conditional likelihood
 – no closed-form solution
 – concave ! global optimum with gradient ascent
 – Maximum conditional a posteriori corresponds to regularization
• Convergence rates
 – GNB (usually) needs less data
 – LR (usually) gets to better solutions in the limit