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What now...

 We have explored many ways of learning
from data

* But...
— How good is our classifier, really?

— How much data do | need to make it “good
enough”?



A simple setting...

e (Classification
— m data points

— Finite number of possible hypothesis (e.g., dec. trees
of depth d)

* Alearner finds a hypothesis h that is consistent
with training data
— Gets zero error in training — error,,..(h) = 0

* What is the probability that h has more than ¢
true error?
— error,, (h) = €



How likely is a bad hypothesis to get m
data points right?

Hypothesis h that is consistent with training data

— got mi.i.d. points right

— h “bad” if it gets all this data right, but has high true error

— What is the probability of this happening?

Prob. h with error,, .(h) 2 ¢ gets randomly drawn data
point right

P(error,,.(n) 2 €, gets one data point right) < 1-¢

Prob. h with error,, .(h) 2 € gets m iid data points right
P(error,,.(n) 2 €, gets m iid data point right) < (1-¢)™



But there are many possible hypothesis
that are consistent with training data

Which classifier should
be learn?

— and how to we
generalize the bounds?

We want to make as

few assumptions as H. &H

° I [ ]
pOSS'.ble- consistent
So, pick any h&H_ with data

But wait, we had a
bound on a single h,
now we need to bound
the worst h€H_




Union bound

* P(AorBorCorDor...)
=<P(A)+P(B) +P(C)+P([D) + ...

Q: Is this a tight bound? Will it be useful?



How likely is learner to pick a bad hypothesis

P(error,.(h) = €, gets m jid data point right) < (1-¢)™

There are k hypothesis consistent with data
— How likely is learner to pick a bad one?
— We need to a bound that holds for all of them!

P(error,,.(h,) = € OR error, (h,) =€ OR ... OR error, (h,) = €)

< ka(errortrue(hk) = 8) < Union bound

< (1-g)m < bound on individual h;s

H|(1-¢)m & k< [H|

H| g me < (1-¢) < e for 0<e<1

IA

IA




Generalization error in finite
hypothesis spaces [Haussler '88]

 Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < e <1 :for any
learned hypothesis h that is consistent on the

training data:

P(errorypyue(h) >¢€) < |Hle ¢



Using 3 PAC bound | Argument: For all h we know that

P(erroripye(h) > ¢€) < |H|e™ ¢

‘ Typlcqlly, 2 use cases: so, with probability 1-5 the
— 1: Pick € and 0, compute m following holds...

— 2: Pick m and o, compute ¢
P(erroryye(h) <€) < |HleT™* <)

In (|H|e™™¢) <Ind

Case/ In|H| —me <In¢ \E:aseZ

In]H|+In5 In|H|+ In3
€ >
m
Log dependence on |H|, ¢ has stronger \
ok if exponential size (but influence than & e shrinks at rate O(1/m)

not doubly)



Limitations of Haussler ‘88 bound
P(errorgeye(h) > ¢€) < |H|e ™€

* Do we really want to pick a consistent
hypothesis h? (where error,, . (h)=0)

train

* Size of hypothesis space
—What if |H]| is really big?
—What if it is continuous?

* First Goal: Can we get a bound for a

learner with error, . (h) in training set?



Question: What’s the expected error
of a hypothesis?

* The error of a hypothesis is like estimating the
parameter of a coin!

* Chernoff bound: for mi.i.d. coin flips, x,,...,X.,
where x, € {0,1}. For O<e<1:

1
P (Q—in > e) < g—2me’
m <

[/




Generalization bound for |H]|
hypothesis

 Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < € < 1: for any learned
hypothesis h:

2
P (erroriye(h) — errory.qin(h) > €) < |H|e 2™

Why? Same reasoning as before. Use the Union
bound over individual Chernoff bounds



PAC bound and Bias-Variance tradeoff

2
P (errort'rue(h) _ errortrain(h) > 6) S ‘H‘e—sz

or, after moving some terms around,

with probability at least 1-0:

In|H|+ In%

errorirye(h) < erroryegin(h) + \

2m

Important: PAC bound holds for all h, but doesn’t

guarantee that algorithm finds best h!!!



PAC bound and Bias-Variance tradeoff

for all h, with probability at least 1-6:

In|H|+ In%

errortrue(h) S errortrain(h> :

| J
|

“biaS”

* Forlarge |H|

\

2m

i
“variance”

— low bias (assuming we can find a good h)
— high variance (because bound is looser)

* Forsmall [H]|
— high bias (is there a good h?)
— low variance (tighter bound)



PAC bound: How much data?

2
P (erroripye(h) — errorygin(h) > €) < |H|e™2™¢

In|H|+In3

2m

errortrue(h) < errortraz’n(h) + \

* Given 0,& how big should m be?

> 1 (In]H|—|—In 1)
m ——— —_—
— De2 )

€




. 1 1
Decision Trees m > ——= (In |H|+ In —)
e? d

 Bound number of decision trees with depth k with data
that has n features:

k
2% (2n)2 ~
 Bad!!l Need exponentially many data points (in k)!!!

m > '2”—2<(2’f— 1)(1 4 logsn) + 1 4+ In 1)

e But, for m data points, tree can’t get too big...
— Number of leaves never more than number data points
— Instead, lets bound number of decision trees with k leaves



PAC bound for decision trees with k
leaves — Bias-Variance revisited

In|H|+ In3
2m

H]f — nk_l (k _I_ 1)2k_1 errorye(h) < errory.qin(h) + J

(k—1)Inn+ (2k—1)In(k+ 1) +In}

2m

errorrye(h) < errortmm(h)+\

Bias / variance again

* k << m: high bias, low variance
* k=m: no bias, high variance

* k>m: we would never do this!!!




What did we learn from decision trees?

e Bias-Variance tradeoff formalized

(k—1)Inn+ (2k —1)In(k+ 1) +In}

2m

erroryrye(h) < errortmm(h)JrJ

 Moral of the story:

Complexity of learning not measured in terms of size
hypothesis space, but in maximum number of points
that allows consistent classification




What about continuous hypothesis
spaces?

In|H|+In3

2m

errortrue(h) < errortrain(h) + \

* Continuous hypothesis space:
— |H| =
— Infinite variance???
* As with decision trees, only care about the

maximum number of points that can be
classified exactly!



How many points can a linear
boundary classify exactly? (1-D)

2 Points: Yes!

...... -+
3 Points: no
4o
oo -
...... = e .db
- -

etc (8 total)



Shattering and VC Dimension

A set of points is shattered by a hypothesis
space H iff:

— For all ways of splitting the examples into
positive and negative subsets

— There exists some consistent hypothesis h

The VC Dimension of H over input space X

— The size of the largest finite subset of X
shattered by H



How many points can a linear
boundary classify exactly? (2-D)

3 Points: Yest!!

+ = T+ -

etc.

+ e
4 Points: No...

etc.



How many points can a linear
boundary classify exactly? (d-D)

* Alinear classifier wy+3._; 4w;x;canrepresent all
assignments of possible labels to d+1 points

— But not d+2!!
— Bias term w, required!

— Rule of Thumb: number of parameters in model
often matches max number of points

 Question: Can we get a bound for error in as a
function of the number of points that can be
completely labeled?



PAC bound using VC dimension

e VC dimension: number of training points that can be
classified exactly (shattered) by hypothesis space H!!!

— Measures relevant size of hypothesis space, as with decision

trees with k leaves

VC(H) (m

V(%?nH) | 1)""”%

errorrye(h) < errotrqin(h)- \

m

* Same bias / variance tradeoff as always
— Now, just a function of VC(H)



Examples of VC dimension

VC(H) (|n —vc%T(HH) + 1) +1in4

m

erroryrye(h) < errortmm(h)+$

Linear classifiers:

— VC(H) = d+1, for d features plus constant term b
Neural networks (we will see this next)

— VC(H) = #parameters

— Local minima means NNs will probably not find best
parameters

1-Nearest neighbor

— VC(H) = oo

SVM with Gaussian Kernel
—VC(H) = oo



What you need to know

Finite hypothesis space

— Derive results

— Counting number of hypothesis
— Mistakes on Training data

Complexity of the classifier depends on number of
points that can be classified exactly

— Finite case — decision trees
— Infinite case — VC dimension

Bias-Variance tradeoff in learning theory
Remember: will your algorithm find best classifier?



