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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨  Assume a particular functional form for link 

function 
¨  Sigmoid applied to a linear function of the input 

features: 

Z 

Features can be discrete or continuous! 
2 ©Carlos Guestrin 2005-2013 



2 

Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, η>0 

Update rule: 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	



    

 

  

 For i=1,…,k,  

 

 

repeat    
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The Cost, The Cost!!! Think about 
the cost… 

n  What’s the cost of a gradient update step for LR??? 
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Learning Problems as Expectations 

n  Minimizing loss in training data: 
¨  Given dataset: 

n  Sampled iid from some distribution p(x) on features: 

¨  Loss function, e.g., hinge loss, logistic loss,… 
¨  We often minimize loss in training data: 

n  However, we should really minimize expected loss on all data: 

n  So, we are approximating the integral by the average on the training data 
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Gradient ascent in Terms of Expectations 

n  “True” objective function: 

 
n  Taking the gradient: 

n  “True” gradient ascent rule: 

 
n  How do we estimate expected gradient? 
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SGD: Stochastic Gradient Ascent (or Descent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient ascent (or descent) 

n  Among many other names 
¨  VERY useful in practice!!! 
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Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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Stochastic Gradient Ascent: 
general case 

n  Given a stochastic function of parameters: 
¨  Want to find maximum 

n  Start from w(0) 
n  Repeat until convergence: 

¨  Get a sample data point xt 
¨  Update parameters: 

n  Works on the online learning setting! 
n  Complexity of each gradient step is constant in number of examples! 
n  In general, step size changes with iterations 
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What you should know… 

n  Classification: predict discrete classes rather than 
real values 

n  Logistic regression model: Linear model 
¨ Logistic function maps real values to [0,1] 

n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
n  Cost of gradient step is high, use stochastic 

gradient descent 
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Linear separability  

n  A dataset is linearly separable iff there exists a 
separating hyperplane: 
¨   Exists w, such that: 

n  w0 + ∑i wi xi > 0; if x={x1,…,xk} is a positive example 
n  w0 + ∑i wi xi < 0; if x={x1,…,xk} is a negative example 
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Not linearly separable data  

n  Some datasets are not linearly separable! 
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Addressing non-linearly separable 
data – Option 1, non-linear features 

n  Choose non-linear features, e.g., 
¨  Typical linear features: w0 + ∑i wi xi 

¨  Example of non-linear features:  
n  Degree 2 polynomials, w0 + ∑i wi xi  + ∑ij wij xi xj 

n  Classifier hw(x) still linear in parameters w 
¨  As easy to learn 
¨  Data is linearly separable in higher dimensional spaces 
¨  More discussion later this quarter 
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Addressing non-linearly separable 
data – Option 2, non-linear classifier 

n  Choose a classifier hw(x) that is non-linear in parameters w, e.g., 
¨  Decision trees, boosting, nearest neighbor, neural networks… 

n  More general than linear classifiers 
n  But, can often be harder to learn (non-convex/concave 

optimization required) 
n  But, but, often very useful 
n  (BTW. Later this quarter, we’ll see that these options are not that 

different) 
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A small dataset: Miles Per Gallon 

From the UCI repository (thanks to Ross Quinlan) 

40 training 
examples 

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Suppose we want 
to predict MPG 
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A Decision Stump 
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Recursion Step 

Take the 
Original 
Dataset.. 

And partition it 
according 
to the value of 
the attribute we 
split on 

Examples 
in which 
cylinders 

= 4  

Examples
in which 
cylinders 

= 5 

Examples
in which 
cylinders 

= 6  

Examples
in which 
cylinders 

= 8 
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Recursion Step 

Records in 
which cylinders 

= 4  

Records in 
which cylinders 

= 5 

Records in 
which cylinders 

= 6  

Records in 
which cylinders 

= 8 

Build tree from 
These examples.. 

Build tree from 
These examples.. 

Build tree from 
These examples.. 

Build tree from 
These examples.. 
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Second level of tree 

Recursively build a tree from the seven 
records in which there are four cylinders and 
the maker was based in Asia 

(Similar recursion in the 
other cases) 
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The final tree 
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Classification of a new example 

n  Classifying a test 
example – traverse tree 
and report leaf label 
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Are all decision trees equal? 

n  Many trees can represent the same concept 
n  But, not all trees will have the same size! 

¨ e.g., φ = A∧B ∨ ¬A∧C  ((A and B) or (not A and C)) 
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Learning decision trees is hard!!! 

n  Learning the simplest (smallest) decision tree is 
an NP-complete problem [Hyafil & Rivest ’76]  

n  Resort to a greedy heuristic: 
¨ Start from empty decision tree 
¨ Split on next best attribute (feature) 
¨ Recurse 
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Choosing a good attribute 
X1 X2 Y 
T T T 
T F T 
T T T 
T F T 
F T T 
F F F 
F T F 
F F F 
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Measuring uncertainty 

n  Good split if we are more certain about 
classification after split 
¨ Deterministic good (all true or all false) 
¨ Uniform distribution bad 

P(Y=A) = 1/4 P(Y=B) = 1/4 P(Y=C) = 1/4 P(Y=D) = 1/4 

P(Y=A) = 1/2 P(Y=B) = 1/4 P(Y=C) = 1/8 P(Y=D) = 1/8 
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Entropy 

Entropy H(X) of a random variable Y 
 
 
 
More uncertainty, more entropy! 
Information Theory interpretation: H(Y) is the expected number of bits needed  

to encode a randomly drawn value of Y  (under most efficient code)  
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Andrew Moore’s Entropy in a nutshell 

Low Entropy High Entropy 
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Low Entropy High Entropy 
..the values (locations of 
soup) unpredictable... 
almost uniformly sampled 
throughout our dining room 

..the values (locations 
of soup) sampled 
entirely from within the 
soup bowl 

Andrew Moore’s Entropy in a nutshell 

©Carlos Guestrin 2005-2013 



16 

31 

Information gain 

n  Advantage of attribute – decrease in uncertainty 
¨  Entropy of Y before you split 

¨  Entropy after split 
n  Weight by probability of following each branch, i.e., 

normalized number of records  

n  Information gain is difference 

X1 X2 Y 
T T T 
T F T 
T T T 
T F T 
F T T 
F F F 
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