
1 

©2005-2013 Carlos Guestrin 1 

Regularization 

Machine Learning – CSE446 
Carlos Guestrin 
University of Washington 
 

April 10, 2013 

Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Ridge Regression 
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n  Ameliorating issues with overfitting:  

n  New objective: 
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Ridge Regression in Matrix Notation 
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Minimizing the Ridge Regression Objective 
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Shrinkage Properties 
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n  If orthonormal features/basis:  

 

ŵridge = (HTH + � I0+k)
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Ridge Regression: Effect of Regularization 
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n  Solution is indexed by the regularization parameter λ 
n  Larger λ 

n  Smaller λ  

n  As λ à 0 

n  As λ à∞ 
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Ridge Coefficient Path 

n  Typical approach: select λ using cross validation, more on this 
later in the quarter 
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From  
Kevin Murphy 
textbook 
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Error as a function of regularization 
parameter for a fixed model complexity 

λ=∞ λ=0 
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What you need to know… 

n  Regularization 
¨ Penalizes for complex models 

n  Ridge regression 
¨ L2 penalized least-squares regression 
¨ Regularization parameter trades off model complexity 

with training error 
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Cross-Validation 
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Test set error as a function of 
model complexity 
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How… How… How??????? 

n  How do we pick the regularization constant λ… 
¨ And all other constants in ML, ‘cause one thing ML 

doesn’t lack is constants to tune… L  

n  We could use the test data, but…  
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(LOO) Leave-one-out cross validation 

n  Consider a validation set with 1 example: 
¨  D – training data 
¨  D\j – training data with j th data point moved to validation set 

n  Learn classifier hD\j with D\j dataset 
n  Estimate true error as squared error on predicting t(xj): 

¨  Unbiased estimate of errortrue(hD\j)! 

¨  Seems really bad estimator, but wait! 

n  LOO cross validation: Average over all data points j: 
¨  For each data point you leave out, learn a new classifier hD\j 
¨  Estimate error as:  
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LOO cross validation is (almost)  
unbiased estimate of true error of hD! 

n  When computing LOOCV error, we only use N-1 data points 
¨  So it’s not estimate of true error of learning with N data points! 
¨  Usually pessimistic, though – learning with less data typically gives worse answer 

n  LOO is almost unbiased! 

n  Great news! 
¨  Use LOO error for model selection!!! 
¨  E.g., picking λ 
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Using LOO to Pick λ 

λ=∞ λ=0 
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Using LOO error for model selection 
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Computational cost of LOO 

n  Suppose you have 100,000 data points 
n  You implemented a great version of your learning 

algorithm 
¨ Learns in only 1 second  

n  Computing LOO will take about 1 day!!! 
¨  If you have to do for each choice of basis functions, it will 

take fooooooreeeve’!!! 
n  Solution 1: Preferred, but not usually possible 

¨ Find a cool trick to compute LOO (e.g., see homework) 
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Solution 2 to complexity of computing LOO:   
(More typical) Use k-fold cross validation 

n  Randomly divide training data into k equal parts 
¨  D1,…,Dk 

n  For each i 
¨  Learn classifier hD\Di using data point not in Di  
¨  Estimate error of hD\Di on validation set Di: 

n  k-fold cross validation error is average over data splits: 

n  k-fold cross validation properties: 
¨  Much faster to compute than LOO 
¨  More (pessimistically) biased – using much less data, only m(k-1)/k 
¨  Usually, k = 10 J 
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What you need to know… 

n  Never ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
train on the test data 

n  Use cross-validation to choose magic 
parameters such as λ 

n  Leave-one-out is the best you can do, but 
sometimes too slow 
¨  In that case, use k-fold cross-validation 
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Variable Selection 
LASSO: Sparse 
Regression 
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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Variable Selection 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose features with largest coefficients in ridge solution 
¨  Computationally intractable to perform “all subsets” regression 

n  Try new penalty: Penalize non-zero weights 
¨  Regularization penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 
¨  This simple approach has changed statistics, machine learning & electrical 

engineering  
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LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Geometric Intuition for Sparsity 
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Picture of Lasso and Ridge regression
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Picture of Lasso and Ridge regression
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Optimizing the LASSO Objective 
n  LASSO solution: 
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ŵLASSO = argmin
w

NX

j=1

 
t(xj)� (w0 +

kX

i=1

wihi(xj))

!2

+ �

kX

i=1

|wi|



14 

Coordinate Descent 
n  Given a function F 

¨  Want to find minimum 

n  Often, hard to find minimum for all coordinates, but easy for one coordinate 
 
n  Coordinate descent: 

n  How do we pick next coordinate? 

n  Super useful approach for *many* problems 
¨  Converges to optimum in some cases, such as LASSO 
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Optimizing LASSO Objective  
One Coordinate at a Time 

n  Taking the derivative: 
¨  Residual sum of squares (RSS):  

 
 
 
¨  Penalty term: 
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at w iff function differentiable at w 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 
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Taking the Subgradient 

n  Gradient of RSS term: 

 
   

¨  If no penalty: 

n  Subgradient of full objective: 
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Setting Subgradient to 0 
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Soft Thresholding  

32 

From  
Kevin Murphy 
textbook 
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Coordinate Descent for LASSO  
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate l at (random or sequentially) 

n  Set: 

n  Where:  

¨  For convergence rates, see Shalev-Shwartz and Tewari 2009 
n  Other common technique = LARS 

¨ Least angle regression and shrinkage, Efron et al. 2004 
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Recall: Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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Now: LASSO Coefficient Path  
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From  
Kevin Murphy 
textbook 
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LASSO Example  

36 

6

Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133

From  
Rob 
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slides 
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What you need to know 

n  Variable Selection: find a sparse solution to learning 
problem 

n  L1 regularization is one way to do variable selection 
¨  Applies beyond regressions 
¨  Hundreds of other approaches out there 

n  LASSO objective non-differentiable, but convex è Use 
subgradient 

n  No closed-form solution for minimization è Use 
coordinate descent 

n  Shooting algorithm is very simple approach for solving 
LASSO 
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