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Regularization in Linear Regression
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m Overfitting usually leads to very large parameter choices, e.g.:
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“‘complexity” penalty by penalizing large weights

m | Regularized or penalized rengssmn aims to impose a}
“Shrinkage” method
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Ridge Regression in Matrix Notation
" JEE
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Minimizing the Ridge Regression Objective
" JEE
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Shrinkage Properties
* JEE—
VAV?"idge - (HTH + A IO—l—k)_lHTt

m If orthonormal features/basis: HTH =7




Ridge Regression: Effect of Regularization
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Solution is indexed by the regularization parameter A
Larger A

Smaller A
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B AsA >
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Ridge Coefficient Path
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m Typical approach: select A using cross validation, more on this
later in the quarter
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Error as a function of regularization

parameter for a fixed model complexity
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What you need to know...

" JEE
m Regularization
Penalizes for complex models
m Ridge regression
L, penalized least-squares regression

Regularization parameter trades off model complexity
with training error
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Cross-Validation
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How... How... How??7??7?77
" JEE
m How do we pick the regularization constant A...

And all other constants in ML, ‘cause one thing ML
doesn’t lack is constants to tune... ®

m \We could use the test data, but...

©2005-2013 Carlos Guestrin 13

(LOQ) Leave-one-out cross validation
" S

m Consider a validation set with 1 example:
D — training data
D\j — training data with j th data point moved to validation set
m Learn classifier hy; with D\j dataset
= Estimate true error as squared error on predicting t(x;):
Unbiased estimate of errory,,(hpy)!

Seems really bad estimator, but wait!

m LOO cross validation: Average over all data points j:
For each data point you leave out, learn a new classifier hp,
Estimate error as: N

1
ErTOrL00 = o7 Z (t(x;) = hpy; (Xj))2
j=1
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LOO cross validation is (almost)
unbiased estimate of true error of h)

When computing LOOCYV error, we only use N-1 data points
So it's not estimate of true error of learning with N data points!
Usually pessimistic, though — learning with less data typically gives worse answer

LOO is almost unbiased!

Great news!
Use LOO error for model selection!!!

E.g., picking A
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Using LOOQ to Pick A

TOT e (W)

ETTOTLOO

A=o0 A=0
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Using LOO error for model selection

(

Computational cost of LOO
" JEE
m Suppose you have 100,000 data points
m You implemented a great version of your learning
algorithm
Learns in only 1 second

m Computing LOO will take about 1 day!!!

If you have to do for each choice of basis functions, it will
take fooooooreeeve’!!!

m Solution 1: Preferred, but not usually possible
Find a cool trick to compute LOO (e.g., see homework)




Solution 2 to complexity of computing LOO:
(More typical) Use k-fold cross validation
" JEE

m Randomly divide training data into k equal parts

m Foreachi
Learn classifier hp,; using data point not in D;
Estimate error of hp,; on validation set D;.
k 2
errorp, = = > (t(x)) = hp\p, (%))

N
X €D;

m k-fold cross validation error is average over data splits:

1k
ETTOT_ fold = % Z erTorp,
i=1

m k-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only m(k-1)/k
Usually, k=10 ©
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What you need to know...
" JE—

m Never ever ever ever ever ever ever ever ever
€VEer ever ever ever ever ever ever ever ever
E€Ver ever ever ever ever ever ever ever ever
train on the test data

m Use cross-validation to choose magic
parameters such as A

m Leave-one-out is the best you can do, but
sometimes too slow

In that case, use k-fold cross-validation
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Variable Selection
LASSO: Sparse

Regression
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Regularization in Linear Regression
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m Overfitting usually leads to very large parameter choices, e.g.:
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“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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Variable Selection
= JEE

m Ridge regression: Penalizes large weights

m What if we want to perform “feature selection™?
E.g., Which regions of the brain are important for word prediction?
Can’t simply choose features with largest coefficients in ridge solution
Computationally intractable to perform “all subsets” regression

m  Try new penalty: Penalize non-zero weights
Regularization penalty:

Leads to sparse solutions

Just like ridge regression, solution is indexed by a continuous param A
This simple approach has changed statistics, machine learning & electrical
engineering
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LASSO Regression
" JEE—

m LASSO: least absolute shrinkage and selection operator

m New objective:
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Geometric Intuition for Sparsity
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Ridge Regression

Lasso
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m LASSO solution:

WLASSO = arg HEHZ t(z;) — (wo + > wihi(z;)

k

i=1

Optimizing the LASSO Objective
"
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Coordinate Descent
= JEE

m Given a function F

Want to find minimum

m Often, hard to find minimum for all coordinates, but easy for one coordinate

m Coordinate descent:

m How do we pick next coordinate?

m  Super useful approach for *many* problems
Converges to optimum in some cases, such as LASSO
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Optimizing LASSO Objective
One Coordinate at a Time
S

N

k 2 k
> (1) -t () 33
j=1 i=1 i=1
m Taking the derivative:

Residual sum of squares (RSS):

8 N k
——RSS(w) = —QZ he(z;) (t(xj) — (wo + Zwihi(m))

owy

Penalty term:
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Subgradients of Convex Functions
" O

m Gradients lower bound convex functions:

m Gradients are unique at w iff function differentiable at w

m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function:
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Taking the Subgradient () e+ xwnen) 3w

J

n
N
m Gradient of RSS term: ag = 2;(’”(’9))2
0 J;V
8_ngSS(W) = apwy — Cy co= QZhé(xj) (t(xj) — (wo + Zwihi(xj)))
Jj=1 i#l

If no penalty:
m Subgradient of full objective:
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Setting Subgradientto 0
® JE
agwg — Cp — A wy <0
&WF(W)—{ [—Cg—)\,—Cg—i—)\] wy =0
apwy — ¢y + A we > 0

Soft Thresholding
" JEE
{ (ce+ A)/ag co < —A
Wy = 0 Cy € [—)\,)\]
(ce — A)/ay co > A

/ From
Ce Kevin Murphy
/ textbook
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Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence

Pick a coordinate / at (random or sequentially)

= Set: (coe+ ) /ag co < —A
Wy = 0 co € [=A )
(ce —A)/ag co > A
= Where: N
a = ZZ(M(XJ))2

v
=23 hilx)) (t(Xﬁ — (wo + Zw,h,(x])))
=1 P!

For convergence rates, see Shalev-Shwartz and Tewari 2009

m Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path
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m Typical approach: select A using cross validation
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Now: LASSO Coefficient Path
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LASSO Example
N
Term Least Squares  Ridge Lasso
Intercept 2.465 2.452  2.468
lcavol 0.680 0.420 0.533 From
. Rob
2 2 1
lweight 0.263 0.238 0.169 Tibshirani
age —0.141 —0.046 slides
lbph 0.210 0.162  0.002
svi 0.305 0.227 0.094
lcp —0.288 0.000
gleason —0.021 0.040
pggib 0.267 0.133
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What you need to know
“
m Variable Selection: find a sparse solution to learning
problem
m |, regularization is one way to do variable selection

Applies beyond regressions
Hundreds of other approaches out there

m LASSO objective non-differentiable, but convex 2 Use
subgradient

m No closed-form solution for minimization = Use
coordinate descent

m Shooting algorithm is very simple approach for solving
LASSO
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