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Regularization in Linear Regression
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m Overfitting usually leads to very large parameter choices, e.g.:
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“‘complexity” penalty by penalizing large weights

m | Regularized or penalized regr'?essmn aims to impose a}
“Shrinkage” method
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Ridge Regression in Matrix Notation prc
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M|n|m|zmg the Ridge Re?ressmn Objectlve
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Shrinkage Properties
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m If orthonormal features/basis: HTH =7
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Ridge Regression: Eff(ect of Regularlzatlon
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m Solution is indexed by the regularization parameter A
Larger A l\ij’\ rtjklu-.;,ﬂ-.,.
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Ridge Coefficient Path
" JEE

w, la
wo " 0/ SM'\L \ &~

e —O—\cav_ol Wi
051 —9—\awgee|ghl \4,1
—o—lph | Yy
0.4} =O=svi q
I .
—O—g;:lzason i Fror.n
0.3 —=@= pgga5 wy F:) Kevin Murphy
sl © textbook
arl D
01f ‘!“ F“ td 7 e® M) Sonm S""‘""’
{ non .}w AP ’/
op 1
0.1 b““- Sr\ﬁ'
. leont
-0.2 . . y . y / v
0 5 10 15 20 25 30
e -

A s g,

m Typical approach: select A using cross validation, more on this
later in the quarter
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Error as a function of regularization
parameter for a fixed model complexity
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What you need to know...

" JEE
m Regularization
Penalizes for complex models

m Ridge regression
L, penalized least-squares regression
Regularization parameter trades off model complexity

with training error
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Cross-Validation
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m How do we pick the regularization constant A...

And all other constants in ML, ‘cause one thing ML
doesn’t lack is constants to tune... ®
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m \We could use the test data, but..
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(LOQ) Leave-one-out cross validation

" JEE— L\r\oo?%
A o
m Consider a validation set with 1 example: - q“"?h
D — training data

D\j — training data with jth data point moved to validation set
m Learn cla's&%nr hp with D\j dataset o (ke ))
= Estimate true error as squared error on predicting t(x;): Y
Unblased estimate of errortrue(hD\l)' ( J‘ }
e o) b (1) )" Elly -
Seems really bad estlmator ut wait! = ( ( ‘\y\‘) (‘O ,{&ﬂ

m LOO cross validation: Average over all data points j:
For each data point you leave out, learn a new classifier hp,
Estimate error as: N

1 2
ErTOTLOO = 37 Z (t(x5) — hovj(x5)) ‘hﬁ’

=1 g (b ) €

©2005-2013 Carlos Guestrin




LOO cross validation is (almost)
unbiased estimate of true error of h)

m When computing LOOCYV error, we only use N-1 data points
e ——
So it's not estimate of true error of learning with N data points!
T
Usually pessimistic, though — learning with less data typically gives worse answer
S

m LOO is almost unbiased!

tisry (k) Ao €[t (W)

m Great news!
Use LOO error for model selection!!!

E.g., picking A
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Using LOOQ to Pick A

ETTOTLOO
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Using LOO error for model selection
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Computational cost of LOO
" JE
m Suppose you have 100,000 data points
m You implemented a great version of your learning
algorithm
Learns in only 1 second
m Computing LOO will take about 1 day!!!
If you have to do for each choice of basis functions, it will
take fooooooreeeve’!!!
m Solution 1: Preferred, but not usually possible

Find a cool trick to compute LOO (e.g., see homework)
N CUosed
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Solution 2 to complexity of computing LOO:
(More typical) Use k-fold cross validation
* JEE

m Randomly divide training data into k equal parts
—

m Foreachi
Learn classifier hp,; using data point not in D;
Estimate error of hp,; on validation set D;.
k 2
errorp, = 5 > (t0x)) ~ ho\p, (7))
x;E€D;
m k-fold cross validation error is average over data splits:

1k
ETTOT_ fold = % Z erTorp,
i=1

m k-fold cross validation p;W

Much faster to compute than LOO
More (pessimistically) biased — using much less data, only m(k-1)/k
Usually, k=10 ©
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What you need to know...
" JEE
m Never ever ever ever ever ever ever ever ever
€VEer ever ever ever ever ever ever ever ever
E€Ver ever ever ever ever ever ever ever ever
train on the test data

m Use cross-validation to choose magic
parameters such as A

m Leave-one-out is the best you can do, but
sometimes too slow

In that case, use k-fold cross-validation
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