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Regularization 
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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Ridge Regression 
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n  Ameliorating issues with overfitting:  

n  New objective: 
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Ridge Regression in Matrix Notation 
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Minimizing the Ridge Regression Objective 
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Shrinkage Properties 
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n  If orthonormal features/basis:  
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Ridge Regression: Effect of Regularization 
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n  Solution is indexed by the regularization parameter λ 
n  Larger λ 

n  Smaller λ  

n  As λ à 0 

n  As λ à∞ 
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Ridge Coefficient Path 

n  Typical approach: select λ using cross validation, more on this 
later in the quarter 
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From  
Kevin Murphy 
textbook 
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Error as a function of regularization 
parameter for a fixed model complexity 

λ=∞ λ=0 
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What you need to know… 

n  Regularization 
¨ Penalizes for complex models 

n  Ridge regression 
¨ L2 penalized least-squares regression 
¨ Regularization parameter trades off model complexity 

with training error 
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Cross-Validation 
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Test set error as a function of 
model complexity 
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How… How… How??????? 

n  How do we pick the regularization constant λ… 
¨ And all other constants in ML, ‘cause one thing ML 

doesn’t lack is constants to tune… L  

n  We could use the test data, but…  
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(LOO) Leave-one-out cross validation 

n  Consider a validation set with 1 example: 
¨  D – training data 
¨  D\j – training data with j th data point moved to validation set 

n  Learn classifier hD\j with D\j dataset 
n  Estimate true error as squared error on predicting t(xj): 

¨  Unbiased estimate of errortrue(hD\j)! 

¨  Seems really bad estimator, but wait! 

n  LOO cross validation: Average over all data points j: 
¨  For each data point you leave out, learn a new classifier hD\j 
¨  Estimate error as:  
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LOO cross validation is (almost)  
unbiased estimate of true error of hD! 

n  When computing LOOCV error, we only use N-1 data points 
¨  So it’s not estimate of true error of learning with N data points! 
¨  Usually pessimistic, though – learning with less data typically gives worse answer 

n  LOO is almost unbiased! 

n  Great news! 
¨  Use LOO error for model selection!!! 
¨  E.g., picking λ 
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Using LOO to Pick λ 

λ=∞ λ=0 
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Using LOO error for model selection 
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Computational cost of LOO 

n  Suppose you have 100,000 data points 
n  You implemented a great version of your learning 

algorithm 
¨ Learns in only 1 second  

n  Computing LOO will take about 1 day!!! 
¨  If you have to do for each choice of basis functions, it will 

take fooooooreeeve’!!! 
n  Solution 1: Preferred, but not usually possible 

¨ Find a cool trick to compute LOO (e.g., see homework) 
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Solution 2 to complexity of computing LOO:   
(More typical) Use k-fold cross validation 

n  Randomly divide training data into k equal parts 
¨  D1,…,Dk 

n  For each i 
¨  Learn classifier hD\Di using data point not in Di  
¨  Estimate error of hD\Di on validation set Di: 

n  k-fold cross validation error is average over data splits: 

n  k-fold cross validation properties: 
¨  Much faster to compute than LOO 
¨  More (pessimistically) biased – using much less data, only m(k-1)/k 
¨  Usually, k = 10 J 
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What you need to know… 

n  Never ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
ever ever ever ever ever ever ever ever ever 
train on the test data 

n  Use cross-validation to choose magic 
parameters such as λ 

n  Leave-one-out is the best you can do, but 
sometimes too slow 
¨  In that case, use k-fold cross-validation 
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