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What is the Perceptron Doing???
* JEEE
m WWhen we discussed logistic regression:
Started from maximizing conditional log-likelihood

m When we discussed the Perceptron:
Started from description of an algorithm

m What is the Perceptron optimizing????
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Hinge Loss
" JEE
m Perceptron prediction:

m Makes a mistake when:

m Hinge loss (same as maximizing the margin used by SVMs)
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Minimizing hinge loss in Batch Setting
" S

m Given a dataset:

m  Minimize average hinge loss:

m How do we compute the gradient?
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Subgradients of Convex Functions
" S

m Gradients lower bound convex functions:

Flo) 3 Fruy+ TFET (=)

m Gradients are unique at w iff function differentiable at w

u Subgradientg: Generalize gradients to non-differentiable points:

Any plane that lower bounds function: Ve -aw T(w)
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Subgradient of Hinge
" S

m Hinge loss:

m Subgradient of hinge loss:
If yO (w.x®)>0:
If y® (w.x®) < 0:
If yO (w.x®)=0:
In one line:
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Subgradient Descent for Hinge Minimization
" JEE

m Given data:

m  Want to minimize:

m Subgradient descent works the same as gradient descent:
But if there are multiple subgradients at a point, just pick (any) one:
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Perceptron Revisited
" JEE

m Perceptron update:

wttD) L w® 1 [yu) (w® . x®) < 0] y %)
m Batch hinge minimization update:
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m Difference?
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What you need to know
* JEE

m Perceptron is optimizing hinge loss
m Subgradients and hinge loss
m (Sub)gradient decent for hinge objective
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Linear Separability: More formally, Using Margin
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Perceptron Analysis: Linearly Separable Case

" J——
= Theorem [Block, Novikoff]: " ,,) (z) Q)) /)((-r) (ﬂ)
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Beyond Linearly Separable Case
" JEE

m  Perceptron algorithm is super cool!

No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid

Makes a fixed number of mistakes, and it's

done for ever! & 2 7 + _
= Even if you see infinite data /\ + =
1 - 4+ -
t
+ + - =
m  However, real world not linearly separable + -4 ¢t
Can’t expect never to make mistakes again - + -
Analysis extends to non-linearly separable + o - -
case + = =

Very similar bound, see Freund & Schapire

Converges, but ultimately may not give good
accuracy (make many many many mistakes)
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What if the data is not linearly separable?
" JEE
Use features of features

. _of features of features....
+ 2 ++ --- ¢(X)Rm|_>F
+ &, + _ - :

Feature space can get really large really quickly)




Higher order polynomials
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d

_ (d+m—1)!
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m — input features
d — degree of polynomial

grows fast!
d=6,m=100
about 1.6 billion terms
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Perceptron Revisited

m  Given weight vector wl, predict point x by:

Mistake at time t: w(t*!) = w/

O + yO x®

Thus, write weight vector in terms of mistaken data points only:
Let M® be time steps up to t when mistakes were made:

Prediction rule now:

When using high dimensional features:
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Dot-product of polynomials

" JEE
d(u) - ¢(v) = polynomials of degree exactly d

Finally the Kernel Trick!!!
(Kernelized Perceptron

m Every time you make a mistake, remember (x®,y®)

m Kernelized Perceptron prediction for x:

sign(w(t) co(x)) = Z QS(X(i)) - (%)

ieM ()

= Z k(x® x)

ieM ()
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Polynomial kernels
* JEE—

m All monomials of degree d in O(d) operations:
P(u)d(v) = (u-v)d = polynomials of degree exactlyd

m How about all monomials of degree up to d?
Solution 0:

Better solution:
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Common kernels
* JEE——
m Polynomials of degree exactly d
K(u,v) = (u-v)*
m Polynomials of degree up to d
K(u,v) = (u-v+ 1)4
m Gaussian (squared exponential) kernel
K(u,v) =exp (—HHQ;QVH)
m Sigmoid o
K(u,v) =tanh(nu-v +v)
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What you need to know
* JEE
m Notion of online learning
m Perceptron algorithm
m Mistake bounds and proofs
m The kernel trick
m Kernelized Perceptron
m Derive polynomial kernel
m Common kernels
m In online learning, report averaged weights at the end
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