
1

1

What’s the Perceptron
Optimizing?

Machine Learning – CSE446
Carlos Guestrin
University of Washington

May 1, 2013
©Carlos Guestrin 2005-2013

The Perceptron Algorithm [Rosenblatt ‘58, ‘62]
n  Classification setting: y in {-1,+1}
n  Linear model

¨  Prediction:

n  Training:
¨  Initialize weight vector:
¨  At each time step:

n  Observe features:
n  Make prediction:
n  Observe true class:

n  Update model:
¨  If prediction is not equal to truth

©Carlos Guestrin 2005-2013 2

2

What is the Perceptron Doing???

n  When we discussed logistic regression:
¨ Started from maximizing conditional log-likelihood

n  When we discussed the Perceptron:
¨ Started from description of an algorithm

n  What is the Perceptron optimizing????

©Carlos Guestrin 2005-2013 3

©Carlos Guestrin 2005-2013 4

Perceptron Prediction: Margin of
Confidence

3

Hinge Loss

n  Perceptron prediction:

n  Makes a mistake when:

n  Hinge loss (same as maximizing the margin used by SVMs)

©Carlos Guestrin 2005-2013 5

Minimizing hinge loss in Batch Setting

n  Given a dataset:

n  Minimize average hinge loss:

n  How do we compute the gradient?

©Carlos Guestrin 2005-2013 6

4

Subgradients of Convex Functions

n  Gradients lower bound convex functions:

n  Gradients are unique at w iff function differentiable at w

n  Subgradients: Generalize gradients to non-differentiable points:
¨  Any plane that lower bounds function:

7 ©Carlos Guestrin 2005-2013

Subgradient of Hinge

n  Hinge loss:

n  Subgradient of hinge loss:
¨  If y(t) (w.x(t)) > 0:
¨  If y(t) (w.x(t)) < 0:
¨  If y(t) (w.x(t)) = 0:
¨  In one line:

©Carlos Guestrin 2005-2013 8

5

Subgradient Descent for Hinge Minimization

n  Given data:

n  Want to minimize:

n  Subgradient descent works the same as gradient descent:
¨  But if there are multiple subgradients at a point, just pick (any) one:

©Carlos Guestrin 2005-2013 9

Perceptron Revisited
n  Perceptron update:

n  Batch hinge minimization update:

n  Difference?

©Carlos Guestrin 2005-2013 10

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t))  0

i
y(t)x(t)

w

(t+1) w

(t) + ⌘
1

N

N
X

i=1

n h

y(i)(w(t) · x(i))  0
i

y(i)x(i)
o

6

What you need to know
n  Perceptron is optimizing hinge loss
n  Subgradients and hinge loss
n  (Sub)gradient decent for hinge objective

©Carlos Guestrin 2005-2013 11

12

Kernels

Machine Learning – CSE446
Carlos Guestrin
University of Washington

May 1, 2013
©Carlos Guestrin 2005-2013

7

©Carlos Guestrin 2005-2013 13

Linear Separability: More formally, Using Margin

n  Data linearly separable, if there exists
¨ a vector
¨ a margin

n  Such that

Perceptron Analysis: Linearly Separable Case

n  Theorem [Block, Novikoff]:
¨  Given a sequence of labeled examples:

¨  Each feature vector has bounded norm:

¨  If dataset is linearly separable:

n  Then the number of mistakes made by the online perceptron on this sequence is
bounded by

©Carlos Guestrin 2005-2013 14

8

Beyond Linearly Separable Case
n  Perceptron algorithm is super cool!

¨  No assumption about data distribution!
n  Could be generated by an oblivious adversary,

no need to be iid
¨  Makes a fixed number of mistakes, and it’s

done for ever!
n  Even if you see infinite data

n  However, real world not linearly separable

¨  Can’t expect never to make mistakes again
¨  Analysis extends to non-linearly separable

case
¨  Very similar bound, see Freund & Schapire
¨  Converges, but ultimately may not give good

accuracy (make many many many mistakes)

©Carlos Guestrin 2005-2013 15

©Carlos Guestrin 2005-2013 16

What if the data is not linearly separable?

Use features of features
of features of features….

Feature space can get really large really quickly!

9

©Carlos Guestrin 2005-2013 17

Higher order polynomials

number of input dimensions

nu
m

be
r o

f m
on

om
ia

l t
er

m
s

d=2

d=4

d=3

m – input features
d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms

