

The Perceptron Algorithm

- Classification setting: y in $\{-1,+1\}$
- Linear model
\square Prediction:
\square Initialize weight vector:
\square At each time step:
- Observe features: $X^{(t)} \in$ (page, uses, ad)
- Make prediction: $\hat{y}=\operatorname{sign}\left(w^{(t)} \cdot x^{(t)}\right)$
- Observe true class: $y(1) t$ trace label

What is the Perceptron Doing???

When we discussed logistic regression:
\square Started from maximizing conditional log-likelihood

$$
\max _{n} P(Y \mid X, w)
$$

- When we discussed the Perceptron:
\square Started from description of an algorithm
- What is the Perceptron optimizing????

Hinge Loss

- Perceptron prediction: Sign $(\omega \cdot x)$

- Hinge loss (same as maximizing the margin used by SVMs)

Minimizing hinge loss in Batch Setting

- Given a dataset: $\left(x^{\prime}, y^{\prime}\right) \ldots\left(x^{N}, y^{N}\right)$
- Minimize average hinge loss:

$$
\left.\begin{array}{ll}
\min \frac{1}{N} \sum_{j=1}^{N} \equiv & \{(w, x) \\
& 0 \text { if } y(w \cdot x) \geqslant 0 \\
-y(w \cdot x) & \text { otherwise }
\end{array}\right\}(-y(w \cdot x))_{+}
$$

- How do we compute the gradient?

$$
\nabla_{w} l(\omega, 0)=0
$$

Subgradients of Convex Functions

- Gradients lower bound convex functions:

- Gradients are unique at whf function differentiable at w
- Subgradients: Generalize gradients to non-differentiable points:

Subgradient of Hinge

- Hinge loss:

■ Subgradient of hinge loss:
\square If $y^{(t)}\left(w \cdot x^{(t)}\right)>0: \quad \partial \ell(\omega, x)=0$If $y^{(t)}\left(w \cdot x^{(t)}\right)<0: \quad \partial \ell(w, x)=-y x$
If $y^{(t)}\left(w \cdot x^{(t)}\right)=0: \partial \ell(\omega, x)=[-y x, 0] \quad$ e.g. $-y x$
\square In one line:
$\partial \ell(w, x)$:
$11(y(w \cdot x) \leqslant 0)(-y x)$
indicator of u mistake

Subgradient Descent for Hinge Minimization

- Given data: $\left(x^{1}, y^{\prime}\right) \ldots\left(x^{N}, y^{N}\right)$
- Want to minimize: $\frac{1}{N} \sum_{j=1} l\left(\omega, x^{j}\right)=\frac{1}{N} \sum_{j=1}^{N}\left(-y^{j}\left(w, x^{j}\right)\right)+$
- Subgradient descent works the same as gradient descent:
\square But if there are multiple subgradients at a point, just pick (any) one:

Perceptron Revisited

- Perceptron update:
$\underline{\mathbf{w}}^{(t+1)} \leftarrow \mathbf{w}^{(t)}+\mathbb{1}\left[y^{(t)}\left(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)}\right) \leq 0\right] y^{(t)} \mathbf{x}^{(t)}$
- Batch hinge minimization update. Sun over data point if mistook on point Jubgradim
$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)}+\eta \frac{1}{N} \sum_{i=1}^{N}\left\{\mathbb{1}\left[y^{(i)}\left(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(i)}\right) \leq 0\right] y^{(i)} \mathbf{x}^{(i)}\right\}$
- Difference?

$$
\begin{aligned}
& \text { ploceptron update is a stochastic gradient } \\
& \text { descent alg for hinge loss minimization } \\
& \text { with fixed step size } \quad(\eta=2)
\end{aligned}
$$

What you need to know

- Perceptron is optimizing hinge loss
- Subgradients and hinge loss
- (Sub)gradient decent for hinge objective

Perceptron Analysis: Linearly Separable Case

Theorem [Block, Novikoff]:
\quad Given a sequence of labeled examples: $\left(x^{(1)}, y^{(1))},\left(x^{(2)}, y^{(2)}\right) \ldots\left(x^{(T)}, y^{(T)}\right)\right.$ examples need not be ibid. or random...

\square If dataset is linearly separable:
$\exists w^{*},\left\|w^{y}\right\|=1 \quad \forall t \quad y(t) \omega^{*} \cdot x(t) \geqslant, \gamma$, for $\gamma>0$

- Then the number of mistakes made by the online perceptron on dis sequence is bounded by

$$
\begin{aligned}
& \left(\frac{R}{\gamma}\right)^{2} \quad \text { wow ! ! } \\
& \text { A constant, dorset doped on } T \\
& \text { ordimanionality of } X 1 \text { ! }
\end{aligned}
$$

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
\square No assumption about data distribution!
- Could be generated by an oblivious adversary, no need to be lid
\square Makes a fixed number of mistakes, and it's $\underset{\text { done for ever! Even if you see infinite data }}{\leftarrow}\left(\frac{2}{8}\right)^{2}$
[■ However, real world not linearly separable
\square Can't expect never to make mistakes again
\square Analysis extends to non-linearly separable case

\square Very similar bound, see Freund \& Schapire
\square Converges, but ultimately may not give good accuracy (make many many many mistakes)

$$
\begin{aligned}
& \text { we need fratmull that make date us linearly seabee } \\
& \text { us pos risible is }
\end{aligned}
$$

