The Perceptron Algorithm

- Classification setting: \(y \in \{-1,+1\} \)
- Linear model
 - Prediction: \(g = \text{Sign}(w \cdot x) \)

- Training:
 - Initialize weight vector: \(w(0) = 0 \) or something similar
 - At each time step:
 - Observe features: \(x^{(t)} \)
 - Make prediction: \(g^{(t)} = \text{Sign}(w^{(t)} \cdot x^{(t)}) \)
 - Observe true class: \(y^{(t)} \) is true label
 - Update model:
 - If prediction is not equal to truth:
 - \(w^{(t+1)} = w^{(t)} + y^{(t)} x^{(t)} \)
 - \(y^{(t)} \) makes mistake
 - \(y^{(t)} = -1 \)

\[\text{Rosenblatt '58, '62} \]
What is the Perceptron Doing???

- When we discussed logistic regression:
 - Started from maximizing conditional log-likelihood
 \[p(y | x, w) \]

- When we discussed the Perceptron:
 - Started from description of an algorithm

- What is the Perceptron optimizing????

Perceptron Prediction: Margin of Confidence
Hinge Loss

- Perceptron prediction: \(\text{Sign}(w \cdot x) \)
- Makes a mistake when: \(y(w \cdot x) < 0 \) →
- Hinge loss (same as maximizing the margin used by SVMs)

Minimizing hinge loss in Batch Setting

- Given a dataset: \((x_1, y_1), \ldots, (x_n, y_n) \)
- Minimize average hinge loss:
 \[
 \min_w \frac{1}{n} \sum_{i=1}^{n} \begin{cases}
 0 & \text{if } y_i(w \cdot x_i) > 0 \\
 -y_i(w \cdot x_i) & \text{otherwise}
 \end{cases}
 \]
- How do we compute the gradient?
Subgradients of Convex Functions

- Gradients lower bound convex functions:
 \[F(w') \geq F(w) + \nabla F(w)^	op (w' - w) \]

- Gradients are unique at \(w \) iff function differentiable at \(w \)

- Subgradients: Generalize gradients to non-differentiable points:
 - Any plane that lower bounds function:
 \[F(w') \geq F(w) + \nabla F(w)^	op (w' - w) \]

 \[\text{For } |w| \to 0: \quad V \in [-1, 1] \quad \text{iff} \quad F(w') \geq F(w) + V (w' - w) \]

Subgradient of Hinge

- Hinge loss:

- Subgradient of hinge loss:
 - If \(y^{(i)} (w \cdot x^{(i)}) > 0 \): \[\ell(w, x) = 0 \]
 - If \(y^{(i)} (w \cdot x^{(i)}) < 0 \): \[\ell(w, x) = -y x \]
 - If \(y^{(i)} (w \cdot x^{(i)}) = 0 \): \[\ell(w, x) = [-y x, 0] \quad \text{e.g. } -y x \]
 - In one line:
 \[\ell(w, x) = \max \{ y (w \cdot x) \leq 0, -y x \} \]
 \[\text{indicators of } m \text{ mistake} \]
Subgradient Descent for Hinge Minimization

- Given data: \((x^i, y^i) \ldots (x^n, y^n)\)

- Want to minimize:
 \[
 \frac{1}{N} \sum_{i=1}^{N} l(w, x^i) = \frac{1}{N} \sum_{i=1}^{N} (-y^i (w \cdot x^i))
 \]

- Subgradient descent works the same as gradient descent:
 - But if there are multiple subgradients at a point, just pick (any) one:
 \[
 w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{N} \mathbb{1}\{l(w, x^i) \neq 0\} \left(-y^i x^i\right)
 \]

Perceptron Revisited

- Perceptron update:
 \[
 w^{(t+1)} \leftarrow w^{(t)} + \mathbb{1}\left[y^{(t)} (w^{(t)} \cdot x^{(t)}) \leq 0\right] y^{(t)} x^{(t)}
 \]

- Batch hinge minimization update:
 \[
 w^{(t+1)} \leftarrow w^{(t)} + \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\left[y^{(i)} (w^{(t)} \cdot x^{(i)}) \leq 0\right] y^{(i)} x^{(i)}
 \]

- Difference?
 - Perceptron update is a stochastic gradient descent algorithm for hinge loss minimization with a fixed step size (\(\eta > 0\))
What you need to know

- Perceptron is optimizing hinge loss
- Subgradients and hinge loss
- (Sub)gradient decent for hinge objective
Linear Separability: More formally, Using Margin

- Data linearly separable, if there exists
 - a vector \(\exists w \), \(\| w \| = 1 \)
 - a margin \(\gamma > 0 \)

 Such that

 \[
 \forall x \in \text{dataset}, \quad y > 0 \quad \text{or} \quad y \leq 0 \quad \text{or} \quad w^T x < -\gamma \quad \text{or} \quad w^T x > \gamma \\
 \text{for all points with } w^T x = 0 \text{ and } y \neq 0 \\
 \text{linearly separable, margin } \gamma
 \]

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - Given a sequence of labeled examples: \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(T)}, y^{(T)}) \)
 - Each feature vector has bounded norm:
 \(\forall t, \| x^{(t)} \| \leq R \)
 - If dataset is linearly separable:
 \(\exists w, \| w \| = 1 \)
 \(\forall t, \quad y^{(t)} w^T x^{(t)} > 0 \) \(\text{for } y > 0 \)

 Then the number of mistakes made by the online perceptron on this sequence is bounded by

 \[
 \left(\frac{R}{\gamma} \right)^2 \leq \text{constant, independent of } T, \text{ dimensionality of } x
 \]
Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it’s done for ever!
 - Even if you see infinite data

- However, real world not linearly separable
 - Can’t expect never to make mistakes again
 - Analysis extends to non-linearly separable case
 - Very similar bound, see Freund & Schapire
 - Converges, but ultimately may not give good accuracy (make many many mistakes)

What if the data is not linearly separable?

- Use features of features of features....

\[\Phi(x) : \mathbb{R}^{\infty} \rightarrow F \]

Feature space can get really large really quickly!
Higher order polynomials

\[\text{num. terms} = \binom{d + m - 1}{d} = \frac{(d + m - 1)!}{d!(m - 1)!} \]

- \(m \) – input features
- \(d \) – degree of polynomial

Even though the dimensions of \(\phi(x) \) are huge, the model very quickly grows fast!

\(d = 6, m = 100 \) about 1.6 billion terms