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The Perceptron Algorithm [Rosenblatt ‘58, ‘62] 
n  Classification setting: y in {-1,+1} 
n  Linear model 

¨  Prediction:  
 

n  Training:  
¨  Initialize weight vector:  
¨  At each time step: 

n  Observe features: 
n  Make prediction: 
n  Observe true class: 

n  Update model:   
¨  If prediction is not equal to truth 
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What is the Perceptron Doing??? 

n  When we discussed logistic regression: 
¨ Started from maximizing conditional log-likelihood 

n  When we discussed the Perceptron: 
¨ Started from description of an algorithm 

n  What is the Perceptron optimizing???? 
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Perceptron Prediction: Margin of 
Confidence 
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Hinge Loss 

n  Perceptron prediction: 

n  Makes a mistake when:  

n  Hinge loss (same as maximizing the margin used by SVMs) 
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Minimizing hinge loss in Batch Setting 

n  Given a dataset: 

n  Minimize average hinge loss: 

n  How do we compute the gradient? 
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at w iff function differentiable at w 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 
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Subgradient of Hinge  

n  Hinge loss: 

 

n  Subgradient of hinge loss: 
¨  If  y(t) (w.x(t)) > 0: 
¨  If  y(t) (w.x(t)) < 0: 
¨  If  y(t) (w.x(t)) = 0: 
¨  In one line: 
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Subgradient Descent for Hinge Minimization 

n  Given data: 

n  Want to minimize: 

n  Subgradient descent works the same as gradient descent: 
¨  But if there are multiple subgradients at a point, just pick (any) one:  
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Perceptron Revisited 
n  Perceptron update: 

 
 

n  Batch hinge minimization update: 

n  Difference? 
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What you need to know 
n  Perceptron is optimizing hinge loss 
n  Subgradients and hinge loss 
n  (Sub)gradient decent for hinge objective 
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Linear Separability: More formally, Using Margin  

n  Data linearly separable, if there exists 
¨ a vector 
¨ a margin  

n  Such that 

Perceptron Analysis: Linearly Separable Case 

n  Theorem [Block, Novikoff]:  
¨  Given a sequence of labeled examples: 

¨  Each feature vector has bounded norm: 

¨  If dataset is linearly separable: 

n  Then the number of mistakes made by the online perceptron on this sequence is 
bounded by 
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Beyond Linearly Separable Case 
n  Perceptron algorithm is super cool! 

¨  No assumption about data distribution!  
n  Could be generated by an oblivious adversary, 

no need to be iid 
¨  Makes a fixed number of mistakes, and it’s 

done for ever! 
n  Even if you see infinite data 

 
n  However, real world not linearly separable 

¨  Can’t expect never to make mistakes again 
¨  Analysis extends to non-linearly separable 

case 
¨  Very similar bound, see Freund & Schapire  
¨  Converges, but ultimately may not give good 

accuracy (make many many many mistakes) 
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What if the data is not linearly separable? 

Use features of features  
of features of features…. 

Feature space can get really large really quickly! 
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Higher order polynomials 

number of input dimensions 
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m – input features 
d – degree of polynomial 

grows fast! 
d = 6, m = 100 
about 1.6 billion terms 


