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Bias-Variance Tradeoff 

n  Choice of hypothesis class introduces learning bias 
¨ More complex class → less bias 
¨ More complex class → more variance 
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Training set error 

n  Given a dataset (Training data) 
n  Choose a loss function 

¨ e.g., squared error (L2) for regression 

n  Training set error: For a particular set of 
parameters, loss function on training data: 
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Training set error as a function of 
model complexity 
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Prediction error 

n  Training set error can be poor measure of 
“quality” of solution 

n  Prediction error: We really care about error 
over all possible input points, not just training 
data: 
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Prediction error as a function of model 
complexity: Bias/Variance tradeoff 
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Prediction error as a function of 
model complexity: train v. true error  
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Computing prediction error 

n  Computing prediction  
¨  Hard integral 
¨  May not know t(x) for every x 

n  Monte Carlo integration (sampling approximation) 
¨  Sample a set of i.i.d. points {x1,…,xM} from p(x) 
¨  Approximate integral with sample average 
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Why training set error doesn’t 
approximate prediction error? 

n  Sampling approximation of prediction error: 

n  Training error : 

n  Very similar equations!!!  
¨  Why is training set a bad measure of prediction error??? 
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Why training set error doesn’t 
approximate prediction error? 

n  Sampling approximation of prediction error: 

n  Training error : 

n  Very similar equations!!!  
¨  Why is training set a bad measure of prediction error??? 

Because you cheated!!!  
 

Training error good estimate for a single w,  
But you optimized w with respect to the training error,  

and found w that is good for this set of samples 
 

Training error is a (optimistically) biased  
estimate of prediction error  
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Test set error 

n  Given a dataset, randomly split it into two parts:  
¨ Training data – {x1,…, xNtrain} 
¨ Test data – {x1,…, xNtest} 

n  Use training data to optimize parameters w 
n  Test set error: For the final output w, evaluate 

the error using: 
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Test set error as a function of 
model complexity 
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Overfitting 

n  Overfitting: a learning algorithm overfits the 
training data if it outputs a solution w when there 
exists another solution w’ such that: 
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How many points to I use for 
training/testing? 

n  Very hard question to answer! 
¨  Too few training points, learned w is bad 
¨  Too few test points, you never know if you reached a good solution 

n  Bounds, such as Hoeffding’s inequality can help: 

n  More on this later this quarter, but still hard to answer 
n  Typically: 

¨  If you have a reasonable amount of data, pick test set “large enough” 
for a “reasonable” estimate of error, and use the rest for learning 

¨  If you have little data, then you need to pull out the big guns… 
n  e.g., bootstrapping  
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Error estimators  
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Error as a function of number of training 
examples for a fixed model complexity 

little data infinite data 
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Error estimators  

Be careful!!!  
 

Test set only unbiased if you never never ever ever 
do any any any any learning on the test data 

 
For example, if you use the test set to select 

the degree of the polynomial… no longer unbiased!!! 
(We will address this problem later in the quarter) 
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What you need to know 

n  True error, training error, test error 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 
¨  Never learn on the test data 

n  Overfitting 
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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 

20 ©2005-2013 Carlos Guestrin 



11 

Ridge Regression 

21 

n  Ameliorating issues with overfitting:  

n  New objective: 
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Ridge Regression in Matrix Notation 

N
 data points 

K+1 basis functions 

N
 data points 

observations weights 

K+
1 basis func
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Minimizing the Ridge Regression Objective 
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Shrinkage Properties 
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n  If orthonormal features/basis:  

 
 

ŵridge = (HTH + � I0+k)
�1HT t

HTH = I
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Ridge Regression: Effect of Regularization 
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n  Solution is indexed by the regularization parameter λ 
n  Larger λ 

n  Smaller λ  

n  As λ à 0 

n  As λ à∞ 
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Ridge Coefficient Path 

n  Typical approach: select λ using cross validation, more on this 
later in the quarter 

26 

From  
Kevin Murphy 
textbook 
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Error as a function of regularization 
parameter for a fixed model complexity 

λ=∞ λ=0 
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What you need to know… 

n  Regularization 
¨ Penalizes for complex models 

n  Ridge regression 
¨ L2 penalized least-squares regression 
¨ Regularization parameter trades off model complexity 

with training error 
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