Challenge 1: Complexity of Computing Gradients in LR

\[w_i^{(t+1)} = w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_{j=1}^{N} x_i^j [y^j - \hat{P}(Y_i = 1 | x_i^j, w)] \right\} \]

- \text{if lots of data} \ldots \text{N is very large} \rightarrow \text{very slow.}

We talked about SGD instead:

- small change after each data point
Challenge 2: Data is streaming

- Assumption thus far: **Batch data**

- But, e.g., in click prediction for ads is a streaming data task:
 - User enters query, and ad must be selected:
 - Observe x_j, and must predict y_j will the user click
 - Observe x_j, and must predict y_j which ads have high click prob.
 - User either clicks or doesn’t click on ad:
 - Label y_j is revealed afterwards
 - Google gets a reward if user clicks on ad
 - Reward is loss in classification
 - What’s Δ?

- Weights must be updated for next time:

Online Learning Problem

- At each time step t:
 - Observe features of data point:
 - Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course
 - Make a prediction:
 - Note: many models are possible, we focus on linear models
 - For simplicity, use vector notation

- Observe true label:
 - Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details beyond scope of course

- Update model:

©Carlos Guestrin 2005-2013
The Perceptron Algorithm

Classification setting: y in $\{-1,+1\}$

Linear model
- Prediction:
 $y = \text{Sign}(w \cdot x)$

Training:
- Initialize weight vector:
- At each time step:
 - Observe features:
 - Make prediction:
 - Observe true class:
 - Update model:
 - If prediction is not equal to truth, if make a mistake:

Fundamental Practical Problem for All Online Learning Methods: **Which weight vector to report?**

Suppose you run online learning method and want to sell your learned weight vector... Which one do you sell???

- Last one?
- Random time step?
- Average:
 $\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w(t)$
- Voting & more advanced methods: how long has this pattern been good
Choice can make a huge difference!!

Mistake Bounds

- Algorithm “pays” every time it makes a mistake:
 - Loss function for online setting: number of mistakes up to time T
 - \Rightarrow Google pays for its mistake

- How many mistakes is it going to make?
Linear Separability: More formally, Using Margin

- Data linearly separable, if there exists
 - a vector $\exists w^*, \|w^*\| = 1$
 - a margin $\gamma > 0$
- Such that:
 - For all points $y = 1$:
 - $y(x) > \gamma$, if $w^* \cdot x > 0$
 - For all points $y = -1$:
 - $y(x) < -\gamma$, if $w^* \cdot x < 0$

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - Given a sequence of labeled examples: $(x_1, y_1), (x_2, y_2), \ldots, (x_T, y_T)$
 - Each feature vector has bounded norm: $\forall t, \|x(t)\| \leq 1$
 - If dataset is linearly separable:
 - $\exists w^*, \|w^*\| = 1$
 - $\forall t, y(t) w^* \cdot x(t) > \gamma$, for $y = 1$

- Then the number of mistakes made by the online perceptron on this sequence is bounded by
 $$\left(\frac{\gamma}{\delta}\right)^2$$
 - A constant, does not depend on T
 - Dimensionality of x!!
Perceptron Proof for Linearly Separable case

- Every time we make a mistake, we get gamma closer to w^*:
 - Mistake at time t: $w(t+1) = w(t) + y(t)x(t)$
 - Taking dot product with w^*:
 - Thus after m mistakes:
 - Similarly, norm of $w^{(t+1)}$ doesn't grow too fast:
 - Thus, after m mistakes:
 - Putting all together:

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
- However, real world not linearly separable
 - Can't expect never to make mistakes again
 - Analysis extends to non-linearly separable case
 - Very similar bound, see Freund & Schapire
 - Converges, but ultimately may not give good accuracy (make many many many mistakes)
What you need to know

- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proof
- In online learning, report averaged weights at the end