

Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
\square He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
\square You say: Please flip it a few times:

\square He says: Why???
\square You say: Because...

Thumbtack - Binomial Distribution

- $\mathrm{P}($ Heads $)=\theta, \mathrm{P}($ Tails $)=1-\theta$

$$
\begin{aligned}
P(D \mid \theta)=P(H H T T H) & =\theta \theta(1-\theta)(1-\theta) \theta \\
& =\theta^{3}(1-\theta)^{2}
\end{aligned}
$$

- Flips are i.i.d.:
\square Independent events HHTT H

Maximum Likelihood Estimation

- Data: Observed set D of α_{H} Heads and α_{T} Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
\square What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)
\end{aligned}
$$

Your first learning algorithm

$\hat{\theta}=\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)$
$=\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$

- Set derivative to zero: $\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0$

How many flips do I need?

$$
\hat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
$$

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: $\theta=3 / 5$, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Humm... The more the merrier???
- He says: Is this why I am paying you the big bucks???

Simple bound
 (based on Hoeffding's inequality)

For $N=\alpha_{H}+\alpha_{T}$, and $\hat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}$

- Let θ^{*} be the true parameter, for any $\varepsilon>0$:

$$
P\left(\left|\hat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

PAC Learning

- PAC: Probably Approximate Correct
- Billionaire says: I want to know the thumbtack parameter θ, within $\varepsilon=0.1$, with probability at least $1-\delta=0.95$. How many flips?

$$
P\left(\left|\hat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$
P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Some properties of Gaussians

- affine transformation (multiplying by scalar and adding a constant)
$\square \mathrm{X} \sim N\left(\mu, \sigma^{2}\right)$
$\square \mathrm{Y}=\mathrm{aX}+\mathrm{b} \quad \rightarrow \quad \mathrm{Y} \sim N\left(\mathrm{a} \mu+\mathrm{b}, \mathrm{a}^{2} \sigma^{2}\right)$
- Sum of Gaussians
$\square X \sim N\left(\mu_{X}, \sigma^{2}{ }_{x}\right)$
$\square \mathrm{Y} \sim N\left(\mu_{\mathrm{Y}}, \sigma^{2}{ }_{\mathrm{Y}}\right)$
$\square Z=X+Y \quad \rightarrow \quad Z \sim N\left(\mu_{X}+\mu_{Y}, \sigma^{2}{ }_{X}+\sigma^{2}{ }_{Y}\right)$

Learning a Gaussian

- Collect a bunch of data
\square Hopefully, i.i.d. samples
\square e.g., exam scores
- Learn parameters

Mean
\square Variance
$P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$

MLE for Gaussian

- Prob. of i.i.d. samples $D=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right\}$:

$$
P(\mathcal{D} \mid \mu, \sigma)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

- Log-likelihood of data:

$$
\begin{aligned}
\ln P(\mathcal{D} \mid \mu, \sigma) & =\ln \left[\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}\right] \\
& =-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Your second learning algorithm: MLE for mean of a Gaussian

- What's MLE for mean?
$\frac{d}{d \mu} \ln P(\mathcal{D} \mid \mu, \sigma)=\frac{d}{d \mu}\left[-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]$

MLE for variance

- Again, set derivative to zero:

$$
\begin{aligned}
\frac{d}{d \sigma} \ln P(\mathcal{D} \mid \mu, \sigma) & =\frac{d}{d \sigma}\left[-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =\frac{d}{d \sigma}[-N \ln \sigma \sqrt{2 \pi}]-\sum_{i=1}^{N} \frac{d}{d \sigma}\left[\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]
\end{aligned}
$$

Learning Gaussian parameters

- MLE:

$$
\begin{aligned}
\widehat{\mu}_{M L E} & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\widehat{\sigma}_{M L E}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
\end{aligned}
$$

- BTW. MLE for the variance of a Gaussian is biased

Expected result of estimation is not true parameter!
Unbiased variance estimator:

$$
\widehat{\sigma}_{\text {unbiased }}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
$$

What you need to know...

- Learning is...
\square Collect some data
- E.g., thumbtack flips
\square Choose a hypothesis class or model
- E.g., binomial
\square Choose a loss function
- E.g., data likelihood
\square Choose an optimization procedure
- E.g., set derivative to zero to obtain MLE
\square Collect the big bucks
- Like everything in life, there is a lot more to learn...
\square Many more facets... Many more nuances...
\square The fun will continue...

Announcement: R Tutorial

- R: open-source scripting language for stats \& ML
- A lot of resources online
- Tutorial:
\square When: Thursday April 4th at 6:00pm
\square Where: EEB 125
- Before attending please download and install R:
\square http://www.r-project.org/
- We recommend using an R environment such as:
$\square R$ studio: http://www.rstudio.com/
\square Tinn-R: http://www.sciviews.org/Tinn-R/

Prediction of continuous variables

- Billionaire sayz: Wait, that's not what I meant!
- You sayz: Chill out, dude.
- He sayz: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.

■ You sayz: I can regress that...

The regression problem

- Instances: < \mathbf{x}_{j}, t_{j} >
- Learn: Mapping from x to $t(\mathbf{x})$
- Hypothesis space:
\square Given, basis functions
\square Find coeffs $\mathbf{w}=\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}\right\}$
$H=\left\{h_{1}, \ldots, h_{K}\right\}$
$\underbrace{t(\mathbf{x})}_{\text {data }} \approx \widehat{f}(\mathbf{x})=\sum_{i} w_{i} h_{i}(\mathbf{x})$
\square Why is this called linear regression???
- model is linear in the parameters
- Precisely, minimize the residual squared error:
$\underset{\substack{ \\\text { cenos } 2013 \text { catas } \\ \mathbf{w}^{*} \text { asestin }}}{\mathbf{w}^{*}} \arg \min _{\mathbf{w}} \sum_{j}\left(t\left(\mathbf{x}_{j}\right)-\sum_{i} w_{i} h_{i}\left(\mathbf{x}_{j}\right)\right)^{2}$

Minimizing the Residua
$\mathbf{w}^{*}=\arg \min _{\mathbf{w}} \underbrace{(\mathbf{H w}-\mathbf{t})^{T}(\mathbf{H w}-\mathbf{t})}_{\text {residual error }}$

Regression solution = simple matrix operations

solution: $\mathbf{w}^{*}=\underbrace{\left(\mathbf{H}^{\mathrm{T}} \mathbf{H}\right)^{-1}}_{\mathbf{A}^{-1}} \underbrace{\mathbf{H}^{\mathrm{T}} \mathbf{t}}_{\mathbf{b}}=\mathbf{A}^{-1} \mathbf{b}$
where $\mathbf{A}=\mathbf{H}^{\mathrm{T}} \mathbf{H}=\underbrace{\square \square \square}_{k \times k \text { matrix }}$
$\mathbf{b}=\mathbf{H}^{\mathrm{T}} \mathbf{t}=\underbrace{\left[\begin{array}{l}\boxminus] \\ \square]\end{array}\right.}_{\mathrm{k} \times 1 \text { vector }}$ for k basis functions

But, why?

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians...

Model: prediction is linear function plus Gaussian noise

$$
\square t(\mathbf{x})=\sum_{i} w_{i} h_{i}(\mathbf{x})+\varepsilon_{\mathbf{x}}
$$

- Learn w using MLE

$$
\begin{aligned}
& \text { w using MLE } \\
& P(t \mid \mathbf{x}, \mathbf{w}, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-\left[t-\sum_{i} w_{i} h_{i}(\mathrm{x})\right]^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Maximizing log-likelihood

Maximize:
$\ln P(\mathcal{D} \mid \mathbf{w}, \sigma)=\ln \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{j=1}^{N} e^{\frac{-\left[t_{j}-\sum_{i} w_{i} h_{i}\left(\mathrm{x}_{j}\right)\right]^{2}}{2 \sigma^{2}}}$

Applications Corner 1

- Predict stock value over time from
\square past values
\square other relevant vars
- e.g., weather, demands, etc.

Applications Corner 2

- Measure temperatures at some locations
- Predict temperatures throughout the environment
[Guestrin et al. '04]

Applications Corner 3

- Predict when a sensor will fail
based several variables
- age, chemical exposure, number of hours used,...

Bias-Variance tradeoff - Intuition

Model too "simple" \rightarrow does not fit the data well A biased solution

- Model too complex \rightarrow small changes to the data, solution changes a lot

A high-variance solution

(Squared) Bias of learner

- Given dataset D with N samples, learn function $h_{D}(x)$
- If you sample a different dataset D^{\prime} with N samples, you will learn different $h_{D}{ }^{\prime}(x)$
- Expected hypothesis: $\mathrm{E}_{\mathrm{D}}\left[\mathrm{h}_{\mathrm{D}}(\mathrm{x})\right.$]
- Bias: difference between what you expect to learn and truth
\square Measures how well you expect to represent true solution
\square Decreases with more complex model
\square Bias 2 at one point x :
\square Average Bias²:

Variance of learner

- Given dataset D with N samples, learn function $h_{D}(x)$
- If you sample a different dataset D^{\prime} with N samples, you will learn different $h_{D}{ }^{\prime}(x)$
- Variance: difference between what you expect to learn and what you learn from a particular dataset
\square Measures how sensitive learner is to specific dataset
\square Decreases with simpler model
\square Variance at one point x :
\square Average pariance:

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
\square More complex class \rightarrow less bias
More complex class \rightarrow more variance

Select points by clicking on the graph or press Example

Calculate View Polynomial Reset

Select points by clicking on the graph or press Example Select points by clicking on the graph or press Example Degree of polynomial: $13 \sim \begin{aligned} & 6 \\ & \text { FitY to } \mathrm{X} \\ & \mathrm{C} \text { Fit to } \mathrm{Y}\end{aligned}$

Calculate View Polynomial Reset

Degree of polynomial: $13 \vee \begin{aligned} & - \\ & \\ & C \text { Fity to } \mathrm{X} \\ & \text { Cito }\end{aligned}$
Calculate View Polynomial Reset

Bias-Variance Decomposition of Error

$\bar{h}_{N}(x)=E_{D}\left[h_{D}(x)\right]$

- Expected mean squared error: $\operatorname{MSE}=E_{D}\left[E_{x}\left[\left(t(x)-h_{D}(x)\right)^{2}\right]\right]$
- To simplify derivation, drop x :
- Expanding the square:

Moral of the Story: Bias-Variance Tradeoff Key in ML

- Error can be decomposed:

$$
\begin{aligned}
\mathrm{MSE} & =E_{D}\left[E_{x}\left[\left(t(x)-h_{D}(x)\right)^{2}\right]\right] \\
& =E_{x}\left[\left(t(x)-\bar{h}_{N}(x)\right)^{2}\right]+E_{D}\left[E_{x}\left[\left(\bar{h}(x)-h_{D}(x)\right)^{2}\right]\right]
\end{aligned}
$$

- Choice of hypothesis class introduces learning bias
\square More complex class \rightarrow less bias
\square More complex class \rightarrow more variance

