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Reinforcement Learning 
 

training by feedback 
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Learning to act 

n  Reinforcement learning 
n  An agent  

¨  Makes sensor observations 
¨  Must select action 
¨  Receives rewards  

n  positive for “good” states 
n  negative for “bad” states 

[Ng et al. ’05]  

©Carlos Guestrin 2005-2013 3 

Markov Decision Process (MDP) 
Representation 

n  State space:  
¨  Joint state x of entire system 

n  Action space:  
¨  Joint action a= {a1,…, an} for all agents 

n  Reward function:  
¨  Total reward R(x,a) 

n  sometimes reward can depend on action 

n  Transition model:  
¨  Dynamics of the entire system P(x’|x,a)  
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Discount Factors 

People in economics and probabilistic decision-making do 
this all the time.	

The “Discounted sum of future rewards” using discount 
factor γ” is 

    (reward now) + 
  γ (reward in 1 time step) + 
  γ 2  (reward in 2 time steps) + 
  γ 3  (reward in 3 time steps) + 
   : 
   :       (infinite sum) 
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The Academic Life 

 Define: 
 VA = Expected discounted future rewards starting in state A 
 VB = Expected discounted future rewards starting in state B 
 VT =       “               “               “          “              “       “    “     T 
 VS =       “               “               “          “              “       “    “     S 

 VD =       “               “               “          “              “       “    “     D 

  How do we compute VA, VB, VT, VS, VD ? 
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Policy 

Policy: π(x) = a 
At state x, 

action a for all 
agents 

π(x0) = both peasants get wood 
x0 

π(x1) = one peasant builds  
barrack, other gets gold  

x1 

π(x2) = peasants get gold,  
footmen attack 

x2 
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Value of Policy 

Value: Vπ(x) 
Expected long-

term reward 
starting from x 

Start  
from x0 

x0 

R(x0) 

π(x0) 

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +  
 γ3 R(x3) + γ4 R(x4) + …] 

Future rewards  
discounted by γ  in [0,1) x1 

R(x1) 
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Computing the value of a policy 
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +  

 γ3 R(x3) + γ4 R(x4) + …] 
n  Discounted value of a state: 

¨  value of starting from x0 and continuing with policy π from then on 

n  A recursion! 
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Simple approach for computing the 
value of a policy: Iteratively 

n  Can solve using a simple convergent iterative approach: 
(a.k.a. dynamic programming) 
¨  Start with some guess V0 

¨  Iteratively say: 
n    

¨  Stop when ||Vt+1-Vt||∞  < ε	

n  means that ||Vπ-Vt+1||∞ < ε/(1-γ) 
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But we want to learn a Policy 
Policy: π(x) = a 

At state x, action 
a for all agents 

π(x0) = both peasants get wood 
x0 

π(x1) = one peasant builds  
barrack, other gets gold  

x1 

π(x2) = peasants get gold,  
footmen attack 

x2 

n  So far, told you how good a 
policy is… 

n  But how can we choose the 
best policy??? 

n  Suppose there was only one 
time step: 
¨  world is about to end!!! 
¨  select action that maximizes 

reward! 
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Unrolling the recursion 

n  Choose actions that lead to best value in the long run 
¨  Optimal value policy achieves optimal value V* 
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Bellman equation 

n  Evaluating policy π: 

n  Computing the optimal value V* - Bellman equation  

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ
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Optimal Long-term Plan 

Optimal Policy: π*(x) Optimal value 
function V*(x) 

Optimal policy: 

€ 

π∗(x) = argmax
a

R(x,a)+ γ P(x' | x,a)V ∗(x')
x'
∑
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Interesting fact – Unique value 

n  Slightly surprising fact: There is only one V* that solves 
Bellman equation! 
¨  there may be many optimal policies that achieve V* 

n  Surprising fact: optimal policies are good everywhere!!! 
 

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

©Carlos Guestrin 2005-2013 15 

Solving an MDP 

n  Policy iteration [Howard ‘60, Bellman ‘57] 

n  Value iteration [Bellman ‘57] 
n  Linear programming [Manne ‘60] 
n  … 

Solve  
Bellman  
equation 

Optimal  
value V*(x) 

Optimal  
policy π*(x) 

Many algorithms solve the Bellman equations: 

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

Bellman equation is non-linear!!! 
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Value iteration (a.k.a. dynamic programming) – 
the simplest of all 

n  Start with some guess V0 

n  Iteratively say: 
n     

n  Stop when ||Vt+1-Vt||∞ < ε	

¨  means that ||V*-Vt+1||∞ < ε/(1-γ) 
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A simple example 

You run a 
startup 
company. 

In every 
state you 
must 
choose 
between 
Saving 
money or 
Advertising. 

γ = 0.9 
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Let’s compute Vt(x) for our example 

t Vt(PU) Vt(PF) Vt(RU) Vt(RF) 

1 
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5 
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V t+1 (x) =max
a
R(x,a)+γ P(x ' | x,a)V t (x ')

x '
∑

Let’s compute Vt(x) for our example 

t Vt(PU) Vt(PF) Vt(RF) Vt(RU) 

1 0 0 10 10 
2 0 4.5 14.5 19 
3 2.03 6.53 25.08 18.55 
4 3.852 12.20 29.63 19.26 
5 7.22 15.07 32.00 20.40 
6 10.03 17.65 33.58 22.43 
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What you need to know 

n  What’s a Markov decision process 
¨ state, actions, transitions, rewards 
¨ a policy 
¨ value function for a policy 

n  computing Vπ	


n  Optimal value function and optimal policy 
¨ Bellman equation 

n  Solving Bellman equation 
¨ with value iteration, policy iteration and linear 

programming 
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The Reinforcement Learning task 

 
World:  You are in state 34. 

 Your immediate reward is 3.  You have possible 3 actions. 
 
Robot:  I’ll take action 2. 
World:    You are in state 77. 

 Your immediate reward is -7.  You have possible 2 actions. 
 
Robot:    I’ll take action 1. 
World:  You’re in state 34 (again). 

 Your immediate reward is 3.  You have possible 3 actions.       
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Formalizing the (online) 
reinforcement learning problem 

n  Given a set of states X and actions A 
¨  in some versions of the problem size of X and A unknown 

n  Interact with world at each time step t: 
¨ world gives state xt and reward rt 
¨ you give next action at 

n  Goal: (quickly) learn policy that (approximately) 
maximizes long-term expected discounted reward 

©Carlos Guestrin 2005-2013 


