Classification

- **Learn**: $h : X \mapsto Y$
 - X – features
 - Y – target classes

- Conditional probability: $P(Y|X)$

- Suppose you know $P(Y|X)$ exactly, how should you classify?
 - Bayes optimal classifier:

- How do we estimate $P(Y|X)$?
Logistic Regression

- Learn $P(Y|X)$ directly
 - Assume a particular functional form for link function
 - Sigmoid applied to a linear function of the input features:
 $$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i x_i)}$$

Features can be discrete or continuous!

Logistic Regression – a Linear classifier

$$P(Y=0|x, w) = g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + \exp(-z)}$$
Loss function: Conditional Likelihood

- Have a bunch of iid data of the form:
 \[(x^i, y^i)_{i=1}^n = D = (D_x, D_y)\]

- Discriminative (logistic regression) loss function:
 Conditional Data Likelihood

\[
\arg\max_w \prod_{j=1}^n P(y^j | x^j, w) = \arg\max_x \sum_{j=1}^n \ln P(y^j | x^j, w)
\]

\[
\ln P(D_y | D_x, w) = \sum_{j=1}^N \ln P(y^j | x^j, w)
\]

Maximizing Conditional Log Likelihood

\[
l(w) \equiv \ln \prod_j P(y^j | x^j, w)
\]

\[
= \sum_j y^j w_0 + \sum_i w_i x_i^j - \ln (1 + \exp(w_0 + \sum_i w_i x_i^j))
\]

Good news: \(l(w)\) is concave function of \(w\), no local optima problems

Bad news: no closed-form solution to maximize \(l(w)\)

Good news: concave functions easy to optimize
Optimizing concave function – Gradient ascent

- Conditional likelihood for Logistic Regression is concave. Find optimum with gradient ascent

 Gradient: \(\nabla_w l(w) = \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right]' \)

 Update rule:
 \[
 \Delta w = \eta \nabla_w l(w) \\
 w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(w)}{\partial w_i}
 \]

- Gradient ascent is simplest of optimization approaches
 - e.g., Conjugate gradient ascent can be much better

 Often, especially in proof, \(\eta \) gets smaller with iterations.
 - E.g., \(\eta_t = \frac{\alpha}{t} \) is a constant.

Maximize Conditional Log Likelihood: Gradient ascent

\[
\frac{\partial l(w)}{\partial w} = f'(s) e^{f(s)}
\]

\[
l(w) = \sum_{j=1}^{k} y_{ij} (w_0 + \sum_{i=1}^{n} w_i x_{ij}) - \ln(1 + \exp(w_0 + \sum_{i=1}^{n} w_i x_{ij}))
\]

\[
\frac{\partial l}{\partial w_i} = \sum_{j=1}^{k} \left[y_{ij} x_{ij} - \frac{x_{ij} \exp(w_0 + \sum_{i=1}^{n} w_i x_{ij})}{\left(1 + \exp(w_0 + \sum_{i=1}^{n} w_i x_{ij})\right)} \right] \frac{\partial}{\partial w_i}
\]

\[
\frac{\partial l}{\partial w_i} = \sum_{j=1}^{k} \left(y_{ij} - \hat{p}(y=1|x_i,w) \right)
\]

Weighed by contribution of \(i \) th feature to predict \(j \).
Gradient Ascent for LR

Gradient ascent algorithm: iterate until change $< \varepsilon$

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid x^j, w^{(0)})]$$

For $i=1,\ldots,k$,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid x^j, w^{(i)})]$$

repeat

Regularization in linear regression

- Overfitting usually leads to very large parameter choices, e.g.:
 - $-2.2 + 3.1 X - 0.30 X^2$
 - $-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \ldots$

- Regularized least-squares (a.k.a. ridge regression), for $\lambda > 0$:

$$w^* = \arg \min_w \sum_j \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2 + \lambda \sum_{i=1}^k w_i^2$$
Linear Separability

- If data is linearly separable, weights go to infinity

\[\frac{1}{1 + e^{-x}} \]

- In general, leads to overfitting:
 - Penalizing high weights can prevent overfitting...

Large parameters → Overfitting

```
\frac{1}{1 + e^{-x}}
\frac{1}{1 + e^{-2x}}
\frac{1}{1 + e^{-100x}}
```

©Carlos Guestrin 2005-2013
Regularized Conditional Log Likelihood

- Add regularization penalty, e.g., L_2:
 \[
 \ell(w) = \ln \prod_{j=1}^{N} P(y_j | x^j, w) - \frac{\lambda}{2} \|w\|_2^2
 \]

- Practical note about w_0:
 \[
 \text{don’t regularize}
 \]

- Gradient of regularized likelihood:
 \[
 \frac{\partial \ell}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\ln \prod_{j} P(y_j | x^j, w) \right) - \frac{\lambda}{2} \frac{\partial \|w\|_2^2}{\partial w_i}
 \]

Standard v. Regularized Updates

- Maximum conditional likelihood estimate
 \[
 w^* = \arg \max_w \ln \prod_{j=1}^{N} P(y_j | x^j, w)
 \]
 \[
 w_i^{(t+1)} = w_i^{(t)} + \eta \sum_j x_i^j [y_j - \hat{P}(Y^j = 1 | x^j, w)]
 \]

- Regularized maximum conditional likelihood estimate
 \[
 w^* = \arg \max_w \ln \prod_{j=1}^{N} P(y_j | x^j, w) - \frac{\lambda}{2} \sum_{i=1}^{k} w_i^2
 \]
 \[
 w_i^{(t+1)} = w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y_j - \hat{P}(Y^j = 1 | x^j, w)] \right\}
 \]
Please Stop!! Stopping criterion

\[\ell(w) = \ln \prod_j P(y_j^i | x_j^i, w) - \lambda ||w||_2^2 \]

- When do we stop doing gradient descent?
 \[\ell(w^t) - \ell(w) \leq \varepsilon \]
- Because \(\ell(w) \) is strongly concave:
 - i.e., because of some technical condition
 \[\ell(w^*) - \ell(w) \leq \frac{1}{2\lambda} ||\nabla \ell(w)||_2^2 < \varepsilon \]
- Thus, stop when:
 \[\frac{1}{2\lambda} ||\nabla \ell(w||_2^2 < \varepsilon \]

Digression: Logistic regression for more than 2 classes

- Logistic regression in more general case (C classes), where \(Y \) in \{1,...,C\}
 - for \(C \) classes \((C-1)(k+1) \) params
 - A class \(c \in \{1,...,C-1\} \)
 \[P(Y = c | x, w) \propto e^{w_0 + \sum_{k=1}^k w_k x_k} \]
 \[P(Y = C | x, w) = 1 - \sum_{c=1}^{C-1} P(Y = c | x, w) \]
- \(C = 2 \)
 - Aims to learn: \(K+1 \) params to learn
 \[P(Y = 1 | x, w) = e^{w_0 + \sum_{k=1}^k w_k x_k} \]
 \[P(Y = 0 | x, w) = 1 - P(Y = 1 | x, w) = \frac{1}{1 + e^{w_0 + \sum_{k=1}^k w_k x_k}} \]
Digression: Logistic regression more generally

- Logistic regression in more general case, where $Y \in \{1, \ldots, C\}$

 for $c < C$
 $$P(Y = c | x, w) = \frac{\exp(w_{c0} + \sum_{i=1}^{k} w_{ci}x_i)}{1 + \sum_{c'=1}^{C-1} \exp(w_{c'0} + \sum_{i=1}^{k} w_{c'i}x_i)}$$

 for $c = C$ (normalization, so no weights for this class)
 $$P(Y = C | x, w) = \frac{1}{1 + \sum_{c'=1}^{C-1} \exp(w_{c'0} + \sum_{i=1}^{k} w_{c'i}x_i)}$$

Learning procedure is basically the same as what we derived!